CS 70 Discrete Mathematics and Probability Theory Spring 2025 Rao DIS 0A

Propositional Logic Intro

Note 1

Proposition: A statement with a truth value; it is either true or false.

Propositions can be combined to form more complicated expressions, using the following operations:

Operators		Quantifiers		Implication	Implication operations	
\wedge	and	\forall	for all	Implication	$P \Longrightarrow Q$	
\vee	or	Ξ	there exists	Inverse	$\neg P \implies \neg Q$	
_	not			Converse	$Q \Longrightarrow P$	
\implies	implies			Contrapositive	$\neg Q \implies \neg P$	
≡	equivalent to					

Further, for an implication $P \implies Q$ where P is the hypothesis and Q is the conclusion, it is useful to know that $P \implies Q \equiv \neg P \lor Q$. Additionally, observe that any implication is logically equivalent to its contrapositive.

DeMorgan's Laws: The following identities can be helpful when simplifying expressions and distributing negations.

- $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- $\neg(\forall x P(x)) \equiv \exists x(\neg P(x))$
- $\neg(\exists x P(x)) \equiv \forall x(\neg P(x))$

1 Propositional Practice

Note 1

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

Recall that \mathbb{R} is the set of reals, \mathbb{Q} is the set of rationals, \mathbb{Z} is the set of integers, and \mathbb{N} is the set of natural numbers. The notation "*a* | *b*", read as "*a* divides *b*", means that *a* is a divisor of *b*.

(a) There is a real number which is not rational.

(b) All integers are natural numbers or are negative, but not both.

(c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.

(d)
$$\neg (\forall x \in \mathbb{Q}) (x \in \mathbb{Z})$$

(e)
$$(\forall x \in \mathbb{Z})(((2 \mid x) \lor (3 \mid x)) \Longrightarrow (6 \mid x))$$

(f) $(\forall x \in \mathbb{N})((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

2 Truth Tables

Note 1

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

(a) $P \wedge (Q \vee P) \equiv P \wedge Q$

(b)
$$(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$$

(c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

3 Implication

Note 0 Note 1

assertion (i.e. come up with a statement P(x, y) that would make the implication false). (a) $\forall x \forall y P(x, y) \implies \forall y \forall x P(x, y)$.

Which of the following implications are always true, regardless of P? Give a counterexample for each false

(b) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y).$

(c) $\exists x \forall y P(x, y) \implies \forall y \exists x P(x, y).$