
Summary.
Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

An aside on “powers”.
Thm: a ̸= 0 (mod p), ap−1 = 1 (mod p).

True/False: a ̸∈ 0,1 (mod p),ax ̸= 1 (mod p) if x ∈ {1,p−2}.

{21,22,23,24}= {2,4,3,1} (mod 5).

{21,22,23,24,25,26}= {2,4,1, . . .} (mod 7).

Actually: {2,4,1,2,4,1} (mod 7). Period: 3. 3|6
“Period” divides p−1.



Today.

Polynomials.

Secret Sharing.

Correcting for loss or even corruption.



Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

The idea of the day.

Two points make a line.
Lots of lines go through one point.



Polynomials

A polynomial

P(x) = ad xd +ad−1xd−1 · · ·+a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ ℜ, use x ∈ ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd +ad−1xd−1 · · ·+a0 (mod p),

for x ∈ {0, . . . ,p−1}.
Degree of a polynomial is exponent of maximum non-zero ad .

Note: Often polynomial of degree d means polynomial of at most d .

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).



Polynomial Quiz.

Recall polynomial: ad xd +ad−1xd−1 + · · ·a0.

Q(x) = 2x2 +3x +4

P(x) = 3x3 +4x2 +5x +2

What is?

What is a1 for P(x)? 5
What is a0 for Q(x)? 4
Degree of Q(x)? 2
Degree of P(x)? 3
What is degree of Q(x)+P(x)? 3
What is degree of Q(x)P(x)? 3 Oops. I mean 5.



Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x +a0 = mx +b

x

P(x)

P(x) = .5x +0P(x) =−1x +3P(x) = 0.5x2 −x +0.1P(x) =−.3x2 +1x + .1

Parabola: P(x) = a2x2 +a1x +a0 = ax2 +bx +c



Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x +1 (mod 5)

x +2 (mod 5)

Finding an intersection.
x +2 ≡ 3x +1 (mod 5)
=⇒ 2x ≡ 1 (mod 5) =⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!



Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d +1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d +1 pts.

2Points with different x values.



Poll.

Two points determine a line.
What facts below tell you this?

Say points are (x1,y1),(x2,y2).

(A) Line is y = mx +b.
(B) Plug in a point gives an equation: y1 = mx1 +b
(B’) Plug in a point gives an equation: y2 = mx2 +b
(C) The unknowns are m and b.
(D) If two equations have unique solution, done.

All true.



In the Flow (Steph Curry) Poll.

Why solution? Why unique?

(A) Solution cuz: m = (y2 −y1)/(x2 −x1),b = y1 −m(x1)

(B) Unique cuz, only one line goes through two points.

(C) Try: (m′x +b′)− (mx +b) = (m′−m)x +(b−b′) = ax +c ̸= 0.

(D) Either ax1 +c ̸= 0 or ax2 +c ̸= 0 or ax +c = 0 always.

(E) Contradiction.

Flow poll. (All true. (B) is not a proof, it is restatement.)



Notation: two points on a line.

Polynomial: anxn + · · ·+a0.

Consider line: mx +b

(A) a1 = m
(B) a1 = b
(C) a0 = m
(D) a0 = b.

(A) and (D)



3 points determine a parabola.

P(x) = 0.5x2 −x +1P(x) =−.3x2 +1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d +1 points. 3

3Points with different x values.



2 points not enough.

P(x) =−.3x2 +1x + .5P(x) = .2x2 − .5x +1.5P(x) =−.6x2 +1.9x − .1

There is P(x) contains blue points and any (0,y)!



Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d +1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and random a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 +ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.



Poll:example.

The polynomial from the scheme: P(x) = 2x2 +1x +3 (mod 5).
What is true for the secret sharing scheme using P(x)?

(A) The secret is “2”.
(B) The secret is “3”.
(C) A share could be (1,5) cuz P(1) = 5
(D) A share could be (2,4)
(E) A share could be (0,3)

(B)(C),(D)



From d +1 points to degree d polynomial?

For a line, a1x +a0 = mx +b contains points (1,3) and (2,4).

P(1) = m(1)+b ≡ m+b ≡ 3 (mod 5)
P(2) = m(2)+b ≡ 2m+b ≡ 4 (mod 5)

Subtract first from second..

m+b ≡ 3 (mod 5)
m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x +2 mod 5.



Quadratic

For a quadratic polynomial, a2x2 +a1x +a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 +a1 +a0 ≡ 2 (mod 5)
P(2) = 4a2 +2a1 +a0 ≡ 4 (mod 5)
P(3) = 4a2 +3a1 +a0 ≡ 0 (mod 5)

a2 +a1 +a0 ≡ 2 (mod 5)
3a1 +2a0 ≡ 1 (mod 5)
4a1 +2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9 ≡ 4 (mod 5)
a2 = 2−1−4 ≡ 2 (mod 5) .

So polynomial is 2x2 +1x +4 (mod 5)



In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

Solve...

ak−1xk−1
1 + · · ·+a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d +1 pts.



Another Construction: Interpolation!
For a quadratic, a2x2 +a1x +a0 hits (1,2); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x −2)(x −3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x −2)(x −3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x −1)(x −3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x −1)(x −2)(3) (mod 5) contains (1,0);(2,0);(3,1 ).

But wanted to hit (1,2); (2,4); (3,0)!

P(x) = 2∆1(x)+4∆2(x)+0∆3(x) works.

Zero and one, my love is won.... P(1) = 2(1)+4(0)+0(0) = 2.
P(2) = 2(0)+4(1)+0(0) = 4.

Same as before? ...after a lot of calculations...

P(x) = 2x2 +1x +4 (mod 5).

The same as before!



Fields.. .

Flowers, and grass, oh so nice.

Set and two commutative operations:
addition and multiplication

with additive/multiplicative identity elts (zero and one)
and inverses except for additive identity has no mulitplicative

inverse.

E.g., Reals, rationals, complex numbers.
Not E.g., the integers, matrices.

We will work with polynomials with arithmetic modulo p.

Addition is cool. Inherited from integers and integer division
(remainders).
Multiplicative inverses due to gcd(x ,p) = 1, forall x ∈ {1, . . . ,p−1}



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i(x) =


1, if x = xi .

0, if x = xj for j ̸= i .
?, otherwise.

(1)

Given d +1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x)+y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x)+y2∆2(x) . . .+yd+1∆d+1(x).



There exists a polynomial...
Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d +1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i(x) =
∏j ̸=i(x −xj)

∏j ̸=i(xi −xj)
= ∏

j ̸=i
(x −xj)∏

j ̸=i
(xi −xj)

−1

Numerator is 0 at xj ̸= xi .“Denominator” makes it 1 at xi .

∆i(xj) = 0 if i ̸= j and ∆i(xi) = 1

And..

P(x) = y1∆1(x)+y2∆2(x)+ · · ·+yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

Since P(xi) = y1(0)+y2(0) · · ·+yi(1) · · ·+yd+1(0).

And Degree d polynomial.

Construction proves the existence of a polynomial!



Poll

Mark what’s true.

(A) ∆1(x1) = y1
(B) ∆1(x1) = 1
(C) ∆1(x2) = 0
(D) ∆1(x3) = 1
(E) ∆2(x2) = 1
(F) ∆2(x1) = 0

(B), (C), and (E)



Example.

∆i(x) =
∏j ̸=i (x−xj )

∏j ̸=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) =
(x−3)
1−3 = x−3

−2 = (x −3)(−2)−1

∆1(x) = (x −3)(1−3)−1 = (x −3)(−2)−1

= 2(x −3) = 2x −6 = 2x +4 (mod 5).

For a quadratic, a2x2 +a1x +a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) =
(x−2)(x−3)
(1−2)(1−3) =

(x−2)(x−3)
2 = (2)−1(x −2)(x −3) = 3(x −2)(x −3)

= 3x2 +3 (mod 5)

Put the delta functions together.



In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

∆i(x) =
∏j ̸=i(x −xj)

∏j ̸=i(xi −xj)
= ∏

j ̸=i
(x −xj)∏

j ̸=i
(xi −xj)

−1

Numerator is 0 at xj ̸= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x)+y2∆2(x)+ · · ·+yk∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk ).

Construction proves the existence of the polynomial!



Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Roots fact: Any nontrivial degree d polynomial has at most d roots.

Non-zero line (degree 1 polynomial) can intersect y = 0 at only one x .

A parabola (degree 2), can intersect y = 0 at only two x ’s.

Proof:
Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d +1 roots and is degree d .
Contradiction.

Must prove Roots fact.



Polynomial Division.

Divide 4x2 −3x +2 by (x −3) modulo 5.

4 x + 4 r 4
-----------------

x - 3 ) 4xˆ2 - 3 x + 2
4xˆ2 - 2x
----------

4x + 2
4x - 2
-------

4

4x2 −3x +2 ≡ (x −3)(4x +4)+4 (mod 5)

In general, divide P(x) by (x −a) gives Q(x) and remainder r .

That is, P(x) = (x −a)Q(x)+ r where Q(x) has degree d −1.



Only d roots.
Lemma 1: P(x) has root a iff P(x)/(x −a) has remainder 0:

P(x) = (x −a)Q(x) where Q(x) has degree d −1.

Proof: P(x) = (x −a)Q(x)+ r .
Plugin a: P(a) = (a−a)Q(a)+ r = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x − r1)(x − r2) · · ·(x − rd ).

Proof Sketch: By induction.

Induction Step: P(x) = (x − r1)Q(x) by Lemma 1.
Q(x) has smaller degree so use the induction hypothesis.

Base case: P(x) = a1x +a0 of degree 1 has form c(x − r1).
Root at r1 = (a1)

−1a0.

Lemma 2 implies d +1 roots implies degree is at least d +1.

Contraposition is...

Roots fact: Any degree d polynomial has at most d roots.



Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.



Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d +1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 +ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.



Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).



Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.



A bit more counting.

What is the number of degree d polynomials over GF (m)?

▶ md+1: d +1 coefficients from {0, . . . ,m−1}.

▶ md+1: d +1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!



Summary
Two points make a line.

Compute solution: m,b.
Unique:

Assume two solutions, show they are the same.

Today: d +1 points make a unique degree d polynomial.

Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:

Roots fact: Factoring sez (x − r) is root.
Induction, says only d roots.

Apply: P(x), Q(x) degree d .
P(x)−Q(x) is degree d =⇒ d roots.
P(x) = Q(x) on d +1 points =⇒ P(x) = Q(x).

Secret Sharing:
k points on degree k −1 polynomial is great!
Can hand out n points on polynomial as shares.


