Today

Probability:
Keep building it formally..
And our intuition.



Poll: blows my mind.

Flip 300 million coins.



Poll: blows my mind.

Flip 300 million coins.

Which is more likely?

(A) 300 million heads.

(B) 300 million tails.

(C) Alternating heads and tails.
(D) A tail every third spot.



Poll: blows my mind.

Flip 300 million coins.

Which is more likely?

(A) 300 million heads.

(B) 300 million tails.

(C) Alternating heads and tails.
(D) A tail every third spot.

Given the history of the universe up to right now.



Poll: blows my mind.

Flip 300 million coins.

Which is more likely?

(A) 300 million heads.

(B) 300 million tails.

(C) Alternating heads and tails.
(D) A tail every third spot.

Given the history of the universe up to right now.

What is the likelihood of our universe?

(A) The likelihood is 1. Cuz here it is.

(B) As likely as any other. Cuz of probability.
(C) Well. Quantum. IDK- TBH.



Poll: blows my mind.

Flip 300 million coins.

Which is more likely?

(A) 300 million heads.

(B) 300 million tails.

(C) Alternating heads and tails.
(D) A tail every third spot.

Given the history of the universe up to right now.

What is the likelihood of our universe?

(A) The likelihood is 1. Cuz here it is.

(B) As likely as any other. Cuz of probability.
(C) Well. Quantum. IDK- TBH.

Perhaps a philosophical (“wastebasket”) question.



Poll: blows my mind.
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Which is more likely?

(A) 300 million heads.

(B) 300 million tails.

(C) Alternating heads and tails.
(D) A tail every third spot.

Given the history of the universe up to right now.

What is the likelihood of our universe?

(A) The likelihood is 1. Cuz here it is.

(B) As likely as any other. Cuz of probability.
(C) Well. Quantum. IDK- TBH.

Perhaps a philosophical (“wastebasket”) question.

Also, “cuz” == “because”
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(C) Some weird song whose refrain he heard in his youth.
(A)

A), (B), and (C)
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Def: Pr(B|A] = 202
Also: Pr[ANB] = Pr[B|A]Pr[A]

Theorem Product Rule
Let A1, As,...,An be events. Then

Pf[A1 ﬂ“'ﬂAn] = PI’[A1]PI’[A2|A1]~~~PI’[An‘A1 ﬁ~-'ﬂAn,1].
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Simple Bayes Rule.

PriAlB) = PIACEL priBiA = PAACEL
Pr{An B] = Pr[A|B|Pr[B] = Pr{BIAIPr[A].

Bayes Rule: Pr[A|B] = w_
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You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair', B= ‘outcome is heads’

We want to calculate P[A|B].
We know P[B|A] = 1/2,P[B|A] = 0.6, Pr[A] = 1/2 = Pr|[A]

Now,
Pr[B] = PrlAnB]+ PrlAnB]= Pr[A|Pr[B|A|+ Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.
Thus,
priag = PAPABIAL . (1/2(1/2) 4 4

Pr[B] (1/2)(1/2)+(1/2)0.6
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pn = PriA,]
Pn . Un B In = P?‘[B|An]
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Event B

Pick a point uniformly at random in the unit square. Then

PrlAnl=pn,n=1,...,N
Pr[B|Anl=gn,n=1,...,N; Pr[AsN B] = pngn
Pr(B]=pig: + -+ PnaN

Pr{A,|B] = — P9

———— = fraction of Binside Aj.
P11+ PnGN
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A general picture: We imagine that there are N possible causes
Aq,..., AN

Ay
N pn = Pr[A,)
Pn ;1 B In = PT[B An]

PN

DA' A, ..., Ay disjoint

AN _(‘-‘IIU"'U_("‘IA.' =

100 situations: 100p,q, where A, and B occur, forn=1,...,N.
In 100Y,,, pmgm occurences of B, 100p,qn, occurrences of Ap.

Hence,

PriAnB] = 2.

But, pn = Pr[An],gn = Pr[B|An], Y. mPmq — m= Pr[B], hence,

Pr[B|An]Pr[An
Pr[An|B] = PAEGAZAL.
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.15 0.80
Flu \

~ % n #(é.

Ebola High Fever
(.85 /]. 10
Other

Using Bayes’ rule, we find

0.15x0.80

Pr[Flu|High Fever] — ~0.
rFlulHigh Fever] = 6 080110 81108501 = 0°¢
Pr[Ebola|High Fever] — 1078 x 1 ~5x10°8
g T 0.15x0.80+10 8x1+085x01
Pr[Other|High Fever] = 0.8501 ~ 0.42

0.15x0.804+10"8 x 1 +0.85x 0.1
The values 0.58,5 x 10~8,0.42 are the posterior probabilities.
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Why do you have a fever?

Our “Bayes’ Square” picture:

Conditional

Prior
probabilities o probabilities
0.15 &j"

Ebola
/1. 10

Other

% 1 @{' 0.85

High Fever

0.80  piy

I Ebola

I Other

Green = Fever

0.10
58% of Fever = Flu

~ 0% of Fever = Ebola
42% of Fever = Other

Note that even though Pr[Fever|Ebola] = 1, one has
Pr[Ebola|Fever] = 0.

This example shows the importance of the prior probabilities.
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Why do you have a fever?

We found

Pr[Flu|High Fever] ~ 0.58,
Pr[Ebola|High Fever] ~5x 1078,
Pr[Other|High Fever] ~ 0.42
‘FIu’ is Most Likely a Posteriori (MAP) cause of high fever.
‘Ebola’ is Maximum Likelihood Estimate (MLE) of cause:

causes fever with largest probability.
Recall that

PmQm

= Pr{Aml,qm = Pr{B|An], Pr{An|B] = — PmIm
Pm [Aml, Gm [BlAm]. Pr{An|B] P1g1 +---+Pmam

Thus,
» MAP = value of m that maximizes pmQqm.
» MLE = value of m that maximizes gn.
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Bayes’ Rule Operations

[Environment|
Priors:

Pr[A,]
Observe B

Posteriors:
Pr[A,|B]

Bayes” Rule

Conditional:
Pr|B|A,]
[Model of system)|

Bayes’ Rule: canonical example of how information changes our
opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

Mo earlier portrait or claimed portrait survives.

Born c. 1701
London, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English

Known for Bayes' theorem




Thomas Bayes

Pr[B|A]

Max

over

FIG. 3. Joshua Bayes (1671-1746 ). Thomas Bayes?

A Bayesian picture of Thomas Bayes.
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Testing for disease.

Random Experiment: Pick a random male.
Outcomes: (test,disease)

A - prostate cancer.

B - positive PSA test.

> Pr[A] =0.0016, (.16 % of the male population is affected.)
> Pr[B|A] = 0.80 (80% chance of positive test with disease.)
> Pr[B|A] =0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?

PriA|B]?7?
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Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

0.9984 % A 70.10
Using Bayes’ rule, we find

0.0016 x 0.80 013
0.0016 x 0.80+0.9984x0.10 "~ =

P[A|B] =

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..

Death.
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Conditional Probability: Pictures/Poll.

lllustrations: Pick a point uniformly in the unit square

B
1

0

0 b

1

1

B

1

0

Which A and B are independent?

(A) Left.
(B) Middle.
(B) Right.

See next slide.

by
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Left: Aand B are independent. Pr[B] = b; Pr[B|A] = b.

Middle: A and B are positively correlated.
Pr|B|A] = by > Pr[B|A] = bo. Note: Pr[B] € (b2, b).

Right: A and B are negatively correlated.
Pr[B|A] = by < Pr[B|A] = by. Note: Pr[B] € (b1, b2).
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Quick Review

‘ Events, Conditional Probability, Independence, Bayes’ Rule
Key Ideas:
» Conditional Probability:
PriAnB
PriAIB] = P35
» Independence: Pr[AN B] = Pr[A]Pr[B].

» Bayes’ Rule:

Pr[An] Pr|B|An]

A Bl = & P TARPIBI AR

Pr[An| B] = posterior probability; Pr[Ap] = prior probability .

> All these are possible:
Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].
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Independence
Recall :

A and B are independent
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Mutually exclusive.

Events A and B are mutually exclusive if AN B is empty.
Are A and B independent?

P[A| =1/3,Pr[B] =1/3.
P[AB]? 0
Independent? Pr[A] # Pr[A|B].
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Pairwise Independence
Flip two fair coins. Let
> A="firstcoinis H' = {HT,HH};
» B="'second coinis H' = {TH, HH};
» C = ‘the two coins are different’ = { TH,HT }.

\\\ \\\
TT O CNO )HT
o
A, C are independent; B, C are independent;
AN B, C are not independent. (PrfJAn BN C] =0 # Pr[An B]Pr[C].)

False: If A did not say anything about C and B did not say
anything about C, then An B would not say anything about C.
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Example

Flip a fair coin 5 times. Let A, = ‘coinnisH’, forn=1,....5.

Then,
Am,An are independent for all m # n.

Also,
Aq and A3 N As are independent.
Indeed, ]
PI’[A1 n (A3 ﬂA5)] = 8 = Pf[A1]Pf[A3 ﬂA5].
Similarly,

Ai1NAs and A3 NA4NAs are independent.

This leads to a definition ....



Mutual Independence

Definition Mutual Independence



Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if



Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if

PrinkekAx] = [] PriA«l. forall K € {1,...,5}.
keK



Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if

PrinkekAx] = [] PriA«l. forall K € {1,...,5}.
keK

(b) More generally, the events {A;,j € J} are mutually independent if



Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if

PrinkekAx] = [] PriA«l. forall K € {1,...,5}.
keK

(b) More generally, the events {A;,j € J} are mutually independent if

Prinkex Akl = [ ] PriAk], for all finiteK C J.
keK



Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if

PrinkekAx] = [] PriA«l. forall K € {1,...,5}.
keK

(b) More generally, the events {A;,j € J} are mutually independent if

Prinkex Akl = [ ] PriAk], for all finiteK C J.
keK

Example: Flip a fair coin forever. Let A, = ‘coin nis H. Then the
events A, are mutually independent.
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Theorem:
Pr[no collision] =~ exp{—%}, for large enough n.
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Balls in bins

Theorem: ,
Pr[no collision] ~ exp{ %=}, for large enough n.

In particular, Pr[no collision] ~ 1/2 for m?/(2n) ~In(2), i.e.,

m=+/2In(2)n=1.2/n.

E.g., 1.2v20~5.4.
Roughly, Pr[collision] ~ 1/2 for m=+/n. (¢ 9%~ 0.6.)
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The Calculation.
A, = no collision when jth ball is placed in a bin.
PriAilAi_1N---n A =(1-51).
no collision = Ay N---NAm.

Product rule:
PrlAiN---NAn] = Pr[A1]Pr[Az|A1] - PrlAm|A1 NN Am_1]

= Pr[no collision] = (1 - :7) (1 B m; : ) '

In(Pr[no collision]) = Y In(1— lr(]) ~ Y (-=)®

Hence,

_tmm-1)®  m?
n 2 T 2n
() We used In(1 —¢) ~ —e for || < 1.
D142+ 4m-1=(m-1)m/2.
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Approximation

-025 ' ' T n ' ' '
-0.2 -0.15 -0.1 -0.05 [} 0.05 0.1 0.15 0.2

exp{—X}:1—X+%X2+--~%1—X7 for |x] <« 1.

Hence, —x ~ In(1 — x) for |x| <« 1.
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Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr[collision] ~ 1/2 if m~1.21/365 ~ 23.
If m= 60, we find that

607
2 x 365

2
Pr[no collision] ~ exp{—'zin} — exp{— } ~0.007.

If m= 366, then Pr[no collision] =



Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr[collision] ~ 1/2 if m~1.21/365 ~ 23.
If m= 60, we find that
02
2 x 365

2
Pr[nocollision]zexp{—%}— xp{— } ~0.007.

If m= 366, then Pr[no collision] = 0. (No approximation here!)
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Checksums!

Consider a set of m files.

Each file has a checksum of b bits.

How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.

Proof:

Let n = 2° be the number of checksums.

We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.
Proof:
Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,
Pr[no collision] ~ 1 —107% < m?/(2n) ~ 1073
& 2n~ mP10% & 26+ ~ m?210

< b+1~=10+2logy(m) =~ 10+2.9In(m).

Note: logs(x) = logo(e) In(x) =~ 1.44In(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) Pr[miss one specific item] ~ e~ 7

(b) Pr[miss any one of the items] < ne~ 7.

BRIAN

WILSON
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Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,
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Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,

PriAm]

In(Pr[Am])

Pr{Am]

~
~

1 1
(1_E)><...

For pm = % we need around nin2 ~ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: E, = fail to get playerk’ , fork=1,...,n
Probability of failing to get at least one of these n players:

pZ:PI’[E1UE2~--UEn]

How does one estimate p? Union Bound:
p=Prl[EfUE;---UE;] < Pr[E1] + Pr|Ez] - - - Pr|Ep].

PriEd]~e 7.k=1,....n.
Plug in and get

33

p<ne
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Collect all cards?

Thus,

m
n .

Pr[missing at least one card] < ne™

Hence,
Pr[missing at least one card] < p when m > nIn(g).
Toget p=1/2,set m=nin(2n).

(p<ne"7 <ne (P < n(B)<p)
E.g., =102 = m=530;n=10% = m=7600.
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