
Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q

⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables. P(x) – true or false
depending on value of x .

P(3) is a proposition.



Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P

Converse: Q =⇒ P

Predicates: Statements with “free” variables. P(x) – true or false
depending on value of x .

P(3) is a proposition.



Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables.

P(x) – true or false
depending on value of x .

P(3) is a proposition.



Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables. P(x) – true or false
depending on value of x .

P(3) is a proposition.



Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables. P(x) – true or false
depending on value of x .

P(3) is a proposition.



Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables. P(x) – true or false
depending on value of x .

P(3) is a proposition.



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)

∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)

∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)

∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait!

What is N?



Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”

Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?



Quantifiers: universes.

Proposition: “For all natural numbers n, ∑
n
i=1 i = n(n+1)

2 .”

Proposition has universe:

“the natural numbers”.

Universe examples include..

▶ N= {0,1, . . .} (natural numbers).

▶ Z= {. . . ,−1,0, . . .} (integers)

▶ Z+ (positive integers)

▶ R (real numbers)

▶ Any set: S = {Alice,Bob,Charlie,Donna}.

▶ See note 0 for more!



Quantifiers: universes.

Proposition: “For all natural numbers n, ∑
n
i=1 i = n(n+1)

2 .”

Proposition has universe: “the natural numbers”.

Universe examples include..

▶ N= {0,1, . . .} (natural numbers).

▶ Z= {. . . ,−1,0, . . .} (integers)

▶ Z+ (positive integers)

▶ R (real numbers)

▶ Any set: S = {Alice,Bob,Charlie,Donna}.

▶ See note 0 for more!



Quantifiers: universes.

Proposition: “For all natural numbers n, ∑
n
i=1 i = n(n+1)

2 .”

Proposition has universe: “the natural numbers”.

Universe examples include..

▶ N= {0,1, . . .} (natural numbers).

▶ Z= {. . . ,−1,0, . . .} (integers)

▶ Z+ (positive integers)

▶ R (real numbers)

▶ Any set: S = {Alice,Bob,Charlie,Donna}.

▶ See note 0 for more!



Back to: Wason’s experiment:1
Theory:

“If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.”

Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x)

=⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False .

Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?

No. Chicago(A) =⇒ Flew(A) is true.
since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No.

Chicago(A) =⇒ Flew(A) is true.
since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False .

Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?

Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes.

Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B)

≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True .

Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?

Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes.

Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True .

Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?

No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No.

Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



Back to: Wason’s experiment:1
Theory: “If a person travels to Chicago, he/she/they flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).

So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.



More for all quantifiers examples.

▶ “doubling a number always makes it larger”

(∀x ∈ N) (2x > x) False Consider x = 0

Can fix statement...

(∀x ∈ N) (2x≥x) True

▶ “Square of any natural number greater than 5 is greater than 25.”

(∀x ∈ N)(x > 5 =⇒ x2 > 25).

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.
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Quantifiers..not commutative.

▶ In English: “there is a natural number that is the square of every
natural number”.

(∃y ∈ N) (∀x ∈ N) (y = x2) False

▶ In English: “the square of every natural number is a natural
number.”

(∀x ∈ N)(∃y ∈ N) (y = x2) True
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Quantifiers....negation...DeMorgan again.

Consider
¬(∀x ∈ S)(P(x)),

English: there is an x in S where P(x) does not hold.

That is,
¬(∀x ∈ S)(P(x)) ⇐⇒ ∃(x ∈ S)(¬P(x)).

What we do in this course! We consider claims.

Claim: (∀x) P(x) “For all inputs x the program works.”
For False , find x , where ¬P(x).

Counterexample.
Bad input.
Case that illustrates bug.

For True : prove claim. Soon...
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Negation of exists.

Consider

¬(∃x ∈ S)(P(x))

English: means that there is no x ∈ S where P(x) is true.
English: means that for all x ∈ S, P(x) does not hold.

That is,
¬(∃x ∈ S)(P(x)) ⇐⇒ ∀(x ∈ S)¬P(x).
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Which Theorem?

Theorem: (∀n ∈ N) n ≥ 3 =⇒ ¬(∃a,b,c ∈ N) (an +bn = cn)

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles:
for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: ¬(∃n ∈ N) (∃a,b,c ∈ N) (n ≥ 3 =⇒ an +bn = cn)
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Summary.
Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables.

Quantifiers: ∀x P(x), ∃y Q(y)

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
¬(P ∨Q) ⇐⇒ (¬P ∧¬Q)
¬∀x P(x) ⇐⇒ ∃x ¬P(x).

And now: proofs!
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Review.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol =⇒ “≥ 18”

“< 18” =⇒ Don’t Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?
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CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example.

2. Direct. (Prove P =⇒ Q. )

3. by Contraposition (Prove P =⇒ Q)

4. by Contradiction (Prove P.)

5. by Cases

If time: discuss induction.



Last time: Existential statement.

How to prove existential statement?

Give an example. (Sometimes called ”proof by example.”)

Theorem: (∃x ∈ N)(x = x2)

Pf: 0 = 02 = 0

Often used to disprove claim.
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Quick Background, Notation and Definitions!

Integers closed under addition.

a,b ∈ Z =⇒ a+b ∈ Z

a|b means “a divides b”.

2|4?

Yes!

Since for q = 2, 4 = (2)2.

7|23?

No!

No q where true.

4|2?

No!

2|−4?

Yes!

Since for q = 2, −4 = (−2)2.

Formally: for a,b ∈ Z, a|b ⇐⇒ ∃q ∈ Z where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and itself.

A number x is even if and only if 2|x , or x = 2k for x ,k ∈ Z.

A number x is odd if and only if x = 2k +1 for x ,k ∈ Z.
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Divides.

a|b means

(A) There exists k ∈ Z, with a = kb.

(B) There exists k ∈ Z, with b = ka.

(C) There exists k ∈ N, with b = ka.

(D) There exists k ∈ Z, with k = ab.

(E) a divides b

Incorrect:
(C) sufficient not necessary.
(A) Wrong way.
(D) the product is an integer.

Correct: (B) and (E).
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Direct Proof.

Theorem: For any a,b,c ∈ Z , if a|b and a|c then a|(b−c).

Proof: Assume a|b and a|c
b = aq and c = aq′ where q,q′ ∈ Z

b−c = aq−aq′ = a(q−q′) Done?

(b−c) = a(q−q′) and (q−q′) is an integer so by definition of divides

a|(b−c)

Works for ∀a,b,c?
Argument applies to every a,b,c ∈ Z .
Used distributive property and definition of divides.

Direct Proof Form:
Goal: P =⇒ Q
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. . .
Therefore Q.
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Another direct proof.
Let D3 be the 3 digit natural numbers.

Theorem: For n ∈ D3, if the alternating sum of digits of n is divisible
by 11, then 11|n.

∀n ∈ D3,(11|alt. sum of digits of n) =⇒ 11|n
Examples:
n = 121 Alt Sum: 1−2+1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6−0+5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For n ∈ D3, n = 100a+10b+c, for some a,b,c.

Assume: Alt. sum: a−b+c = 11k for some integer k .

Add 99a+11b to both sides.

100a+10b+c = 11k +99a+11b = 11(k +9a+b)

Left hand side is n, k +9a+b is integer. =⇒ 11|n.

Direct proof of P =⇒ Q:
Assumed P: 11|a−b+c . Proved Q: 11|n.
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Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)

Proof: Assume 11|n.
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a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof:

Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k

=⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k

=⇒
a−b+c = 11k −99a−11b =⇒

a−b+c = 11(k −9a−b) =⇒
a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b

=⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b)

=⇒
a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ

where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒

Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)
Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.

what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q

...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P

equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even.

d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd

= q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k)

= 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even.

¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = kd and n = 2k ′+1 for integers k ,k ′.
what do we know about d?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P



Another Contraposition...

Lemma: For every n in N, n2 is even =⇒ n is even. (P =⇒ Q)

n2 is even, n2 = 2k , ...
√

2k even?

Proof by contraposition: (P =⇒ Q)≡ (¬Q =⇒ ¬P)

P = ’n2 is even.’ ........... ¬P = ’n2 is odd’

Q = ’n is even’ ........... ¬Q = ’n is odd’

Prove ¬Q =⇒ ¬P: n is odd =⇒ n2 is odd.

n = 2k +1

n2 = 4k2 +4k +1 = 2(2k2 +2k)+1.

n2 = 2l +1 where l is a natural number..

... and n2 is odd!

¬Q =⇒ ¬P so P =⇒ Q and ...
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Proof by contradiction:form

Theorem:
√

2 is irrational.

Must show: For every a,b ∈ Z , ( a
b )

2 ̸= 2.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

¬P =⇒ P1 · · · =⇒ R

¬P =⇒ Q1 · · · =⇒ ¬R

¬P =⇒ R∧¬R ≡ False

or ¬P =⇒ False

Contrapositive of ¬P =⇒ False is True =⇒ P.
Theorem P is true. And proven.
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Contradiction

Theorem:
√

2 is irrational.

Assume ¬P:
√

2 = a/b for a,b ∈ Z .

Reduced form: a and b have no common factors.
√

2b = a

2b2 = a2

= 4k2

a2 is even =⇒ a is even.

a = 2k for some integer k

b2 = 2k2

b2 is even =⇒ b is even.
a and b have a common factor. Contradiction.
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Proof by contradiction: example
Theorem: There are infinitely many primes.

Proof:

▶ Assume finitely many primes: p1, . . . ,pk .

▶ Consider number

q = (p1 ×p2 ×·· ·pk )+1.

▶ q cannot be one of the primes as it is larger than any pi .

▶ q has prime divisor p (“p > 1” = R ) which is one of pi .

▶ p divides both x = p1 ·p2 · · ·pk and q, and divides q−x ,

▶ =⇒ p|(q−x) =⇒ p ≤ (q−x) = 1.

▶ so p ≤ 1. (Contradicts R.)

The original assumption that “the theorem is false” is false,
thus the theorem is proven.
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Product of first k primes..

Did we prove?

▶ “The product of the first k primes plus 1 is prime.”

▶ No.

▶ The chain of reasoning started with a false statement.

Consider example..

▶ 2×3×5×7×11×13+1 = 30031 = 59×509

▶ There is a prime in between 13 and q = 30031 that divides q.

▶ Proof assumed no primes in between pk and q.
As it assumed the only primes were the first k primes.
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Poll: Odds and evens.
x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A) x3

Even: (2k)3 = 2(4k3)

(B) y3

(C) x +5x

Even: 2k +5(2k) = 2(k +5k)

(D) xy

Even: 2(ky).

(E) xy5

Even: 2(ky5).

A, C, D, E all contain a factor of 2.
E.g., x = 2k , x3 = 8k = 2(4k) and is even.

y3. Odd?
y = (2k +1). y3 = 8k3+24k2+24k +1 = 2(4k3+12k2+12k)+1.

Odd times an odd? Odd.

Any power of an odd number? Odd.
Idea: (2k +1)n has terms
(a) with the last term being 1
(b) and all other terms having a multiple of 2k .
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Proof by cases.
Theorem: x5 −x +1 = 0 has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to x5 −x +1 = 0 and x = a/b for a,b ∈ Z ,
then both a and b are even.

Reduced form a
b : a and b can’t both be even! + Lemma

=⇒ no rational solution.

Proof of lemma: Assume a solution of the form a/b.(a
b

)5
− a

b
+1 = 0

Multiply by b5,
a5 −ab4 +b5 = 0

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.
Case 2: a even, b odd: even - even +odd = even. Not possible.
Case 3: a odd, b even: odd - even +even = even. Not possible.
Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
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Proof by cases.

Theorem: There exist irrational x and y such that xy is rational.

Let x = y =
√

2.

Case 1: xy =
√

2
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2
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Case 2:
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2
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√
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Thus, we have irrational x and y with a rational xy (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
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Poll: proof review.

Which of the following are (certainly) true?

(A)
√

2 is irrational.

(B)
√

2
√

2
is rational.

(C)
√

2
√

2
is rational or it isn’t.

(D) (
√

2
√

2
)
√

2 is rational.

(A),(C),(D)

(B) I don’t know.
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Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity

theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4 = 3.

By commutativity theorem holds.

What’s wrong?

Don’t assume what you want to prove!



Be really careful!
Theorem: 1 = 2
Proof:

For x = y , we have

(x2 −xy) = x2 −y2

x(x −y) = (x +y)(x −y)
x = (x +y)
x = 2x

1 = 2

Poll: What is the problem?

(A) Assumed what you were proving.

(B) No problem. Its fine.

(C) x −y is zero.

(D) Can’t multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

P =⇒ Q does not mean Q =⇒ P.
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(C) x −y is zero.

(D) Can’t multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!
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Summary: Note 2.
Direct Proof:

To Prove: P =⇒ Q. Assume P. Prove Q.
a|b and a|c =⇒ a|(b−c).

By Contraposition:
To Prove: P =⇒ Q Assume ¬Q. Prove ¬P.
n2 is odd =⇒ n is odd. ≡ n is even =⇒ n2 is even.

By Contradiction:
To Prove: P Assume ¬P. Prove False .√

2 is rational.√
2 = a

b with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either

√
2 and

√
2 worked.

or
√

2 and
√

2
√

2
worked.

Careful when proving!
Don’t assume the theorem. Divide by zero.Watch converse. ...
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CS70: Note 3. Induction!

Poll. What’s the biggest number?

(A) 100

(B) 101

(C) n+1

(D) infinity.

(E) This is about the “recursive leap of faith.”


