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There exists quantifier:
(3x € S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(3x € N)(x = x?)
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Quantifiers: universes.

Proposition: “For all natural numbers n, Y i = @

Proposition has universe: “the natural numbers”.
Universe examples include..

» N={0,1,...} (natural numbers).

> Z={...,—1,0,...} (integers)

> Z* (positive integers)

» R (real numbers)

> Any set: S = {Alice, Bob, Charlie, Donna}.

» See note 0 for more!
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More for all quantifiers examples.

» “doubling a number always makes it larger”
(vxeN)(2x >x) False Consider x=0

Can fix statement...

(Vx e N) (2x>x) True

» “Square of any natural number greater than 5 is greater than 25

(Vx e N)(x >5 = x2 > 25).
Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.
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» In English: “there is a natural number that is the square of every
natural number”.

(3y eN) (¥xeN) (y=x2) False

» In English: “the square of every natural number is a natural
number.”

(Vx e N)(3y eN) (y = x?) True
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Quantifiers....negation...DeMorgan again.

Consider
—(vx € S)(P(x)),

English: there is an x in S where P(x) does not hold.

That is,
—(Vx € S)(P(x)) < 3(x € S)(—=P(x)).

What we do in this course! We consider claims.

Claim: (¥x) P(x) “For all inputs x the program works.”
For False , find x, where =P(x).

Counterexample.

Bad input.

Case that illustrates bug.
For True : prove claim. Soon...
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Negation of exists.

Consider

—=(3x € S)(P(x))
English: means that there is no x € S where P(x) is true.
English: means that for all x € S, P(x) does not hold.

That is,
—(3x € S)(P(x)) < V(x € S)-P(x).
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Which Theorem?

Theorem: (VneN)n>3 = —(3a,b,ceN)(a"+b"=c")
Which Theorem?
Fermat’s Last Theorem!

Remember Special Triangles:
for n=2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn'’t fit in the margins.
1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: =(3ne N) (3a,b,ceN) (n>3 = a"+b"=c")
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Summary.

Propositions are statements that are true or false.
Propositional forms use A,V, .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.
Implication: P —= Q < -PVAQ.

Contrapositive: -Q =— —P
Converse: Q =— P

Predicates: Statements with “free” variables.
Quantifiers: Vx P(x), 3y Q(y)
Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
-(PvQ) < (-PA-Q)
-Vx P(x) < 3Ix =P(x).

And now: proofs!
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Theory: If you drink alcohol you must be at least 18.
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“< 18" = Don’t Drink Alcohol. Contrapositive.
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CS70: Lecture 2. QOutline.

Today: Proofs!!!

1.

0D

5.

By Example.

Direct. (Prove P = Q.)

by Contraposition (Prove P = Q)
by Contradiction (Prove P.)

by Cases

If time: discuss induction.
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Last time: Existential statement.

How to prove existential statement?

Give an example. (Sometimes called "proof by example.”)
Theorem: (3x € N)(x = x?)

Pf:0=02=0

Often used to disprove claim.
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Quick Background, Notation and Definitions!

Integers closed under addition.
abeZ — a+beZ
alb means “a divides b”.
2|4? Yes! Since for g =2, 4 = (2)2.
71237 No! No g where true.
4|27 No!
2| —47? Yes! Since for g =2, —4 = (—2)2.
Formally: for a,b € Z, alb < 3q € Z where b= aq.
3|15 since for g =5, 15 = 3(5).
A natural number p > 1, is prime if it is divisible only by 1 and itself.
A number x is even if and only if 2|x, or x = 2k for x,k € Z.
A number x is odd if and only if x =2k +1 for x,k € Z.
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Divides.

alb means
A) There exists k € Z, with a= kb.

(

(B) There exists k € Z, with b = ka.
(C) There exists k € N, with b = ka.
(D) There exists k € Z, with k = ab.
(E) adivides b

Incorrect:

(C) sufficient not necessary.
(A) Wrong way.
(D) the product is an integer.

Correct: (B) and (E).
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Theorem: P.
-P—= P;--- = R
-P= Q- = -R
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Product of first k primes..

Did we prove?
» “The product of the first k primes plus 1 is prime.”
> No.

» The chain of reasoning started with a false statement.

Consider example..
> 2x3x5x7x11x13+1=30031=59 x 509
» There is a prime in between 13 and g = 30031 that divides q.

» Proof assumed no primes in between py and q.
As it assumed the only primes were the first k primes.
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X is even, y is odd.
Even numbers are divisible by 2.
Which are even?
) x3 Even: (2k)® = 2(4k%)

xy Even: 2(ky).

(A
B)y
(C) x+5x Even: 2k +5(2k) = 2(k + 5k)
(D)
(E) xy® Even: 2(ky®).

A, C, D, E all contain a factor of 2.
E.g., X = 2k, x3 = 8k = 2(4k) and is even.

y3. Odd?
y=(2k+1). y® =8k3 +24k? + 24k +-1 = 2(4k3 + 12k +12k) +1.
Odd times an odd? Odd.
Any power of an odd number? Odd.
Idea: (2k +1)" has terms

(a) with the last term being 1
(b) and all other terms having a multiple of 2k.
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Proof by cases.

Theorem: There exist irrational x and y such that x¥ is rational.
Letx =y =+2.

V2 . .
Case 1: x¥ =+/2" " is rational. Done!

Case 2: \/é\/é is irrational.

» New values: x = \@\/E, y=+2.
>

X = (ff) VRt s

Thus, we have irrational x and y with a rational x¥ (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds? Don’t know!!!
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Poll: proof review.

Which of the following are (certainly) true?
(A) f |s irrational.

(B) \f |s rational.

(C) V22 is rational or it isn't.
(D) (\ff)f is rational.
(A),(C),(D)
(B) I don’t know.
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Be careful.

Theorem: 3 =4
Proof: Assume 3 =4.
Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4=3.

By commutativity theorem holds.
What's wrong?

Don’t assume what you want to prove!
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Theorem: 1 =2
Proof: For x = y, we have

(2 —xy) = X2~ y?
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CS70: Note 3. Induction!

Poll. What'’s the biggest number?
A) 100

B) 101

) n+1

D)

)

E) This is about the “recursive leap of faith.”

infinity.
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