Today

Estimation.
MMSE: Best Function that predicts X from Y.
Conditional Expectation.
Finish Linear Regression:
Best linear function prediction of Y given X.

Applications to random processes.

Estimation: ¢s70 style

Given distribution for Y.

What is the distribution?
Probability “mass” function: Pr[Y = y].

What should we guess for the value of Y, before hand?
That is what number ¥ should we predict for Y?

Estimation: Expectation and Mean Squared Error.

Given distribution (probability mass function): Pr[Y = y].

“Best” guess about Y, is E[Y].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let V:= Y —E[Y].
Then, E[¥] = E[Y — E[Y]] = E[Y] - E[Y] =0.
So, E[Yc] =0,Vc. Now,
E(Y-a? = E[(Y-E[Y]+E[Y]-a)]
= E[(Y+c)?| withc=E[Y]-a
= E[V2+2Vc+c? = E[V?+2E[Vc]+c?
= E[V34+0+c%>E[V2.

Hence, E[(Y — a)?] > E[(Y — E[Y])?],Va. 0

Estimation: Preamble

Thus, best guess, ¥, for the value of Y, is E[Y].
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y?

Review

Definitions Let X and Y be RVs on Q.
» Distribution: Pr[Y =y]
» Joint Distribution: Pr[X =x,Y =y]
> Marginal Distribution: Pr[X =x] =Y, PriX=x,Y = y]

PriX=x,Y=y]

> Conditional Distribution: Pr[Y = y|X = x] = —pgx=5

Whatis Y, PrX =x,Y —y]? 1.
Whatis Y, PriX =x]? 1
Whatis y, PriX =x,Y =y]? Pr[X=x].

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[YIX]=9(X)
where
g(x) = E[Y|X=x]:= Zy x PrlY =y|X =x].
Fact Y
E[Y|IX=x]=Y Y(0)x Prlo|X =X].
[0}
Proof: E[Y|X = x] = E[Y|Al with A= {w: X(®) = x}. O
What is “X = x"? An event. In the above? The event A="X = x".
Note: E[Y|X] is a function on values for X that gives a number.
Today: we view as a predicted value for Y.




Properties of CE

EYIX=x]=Y yxPr[Y =y|X=x]
iz

Theorem
a) X, Y independent = E[Y|X] = E[Y];

(

(b) E[aY +bZ|X] = aE[Y|X] + bE[Z|X];

(e) E[Yh(X)IX] = h(X)E[Y|X],Vh(-);

(d) E[h(X)E[Y|X]] = E[h(X) Y], ¥h();

(e) E[E[Y|X]] = E[Y].

Proof:
(a) Obvious and Pr[Y =y|X =x]=Pr[Y =y]
](b)Linearity of expectation in sample space
(c) E[Yh(X)|X =x]= Z Y(o ))Prlo| X = x]

72\/ X)Pr{o|X = X] = h(x)E[Y|X = x]

Properties of CE
E[Y|X =x] :ZyPr[Y:y|X:x]
y

Theorem
(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X]+ bE[Z|X];
(¢) E[Yh(X)|X] = h(X)E[Y|X], ¥h(-);

(d) E[n(X)E[Y|X]] = E[n(X)Y],Vh(-);
(e) E[ETY|X]] = E[Y].

Proof: (continued)
d) E[A(X)E[Y|X]]= Zh(x)E[Y\X = X]Pr[X = x]

=Y h(x)Yy x PrlY = y|X = x]Pr[X = x]
X y
:Zh(x)ZyX PriX=x,y=y]

Z y><Pr[X X,y =yl = E[h(X)Y].
Xy

Properties of CE

E[YIX=x]=Y yPr[Y =y|X=x]
iz

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) ElaY +bZ|X] = aE[Y|X]+ bE[Z|X];
(e) E[Yh(X)|X] = h(X)E[Y|X],Vh();

(d) E[(X)E[Y|X]] = E[n(X) Y], Vh(-);
(e) E[E[Y|X]] = E[Y1.

Proof: (continued)
(e) Let h(X)=1in(d).

Properties of CE

Theorem

(a ) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
(c) E[YA(X)|X] = h(X)E[Y|X].Vh();

(d) E[A(X)E]Y|X]] = E[A(X) Y].¥A();
(e) E[ETYIX]] = E[Y].

Note that (d) says that
E[(Y — E[Y|XDh(X)|X] =

Note: one view is that the estimation error Y — E[Y|X] is orthogonal
to every function h(X) of X.

This the projection property.

It gives that E[Y|X] is best estimator for Y given X.

CE = MMSE (Minimum Mean Squared Estimator)

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

EVIX]

Linear Regression

- X

CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].

Proof: Recall: Expectation of r.v. mimimizes mean squared error.
Sample space X = x: so E[Y|X = x] minimizes mean squared
error.
Proof:
Let h(X) be any function of X. Then
E[(Y—h(X)?] = E[(Y—g(X)+g(X)—h(X))?]
= E[(Y—g(X))?1+E(9(X) ~ h(X))?]
+2E[(Y = g(X))(a(X) — h(X))].

But,
E[(Y —g(X))(g(X)— h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y — g(X))?].




Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

[copof[op ec]x=s

|O ® O O”O (Ol ] O||. o e .|A\'|:5

In this example, d = 4.

Application: Going Viral

[Cor o] [Cp e xms

‘O ® O OHO o e OH. o e .‘/\\25

Fact: Number of tweets X =Y;_; X, where X, is tweets in level n.
Then, E[X] < iff pd < 1.

Proof:
Given X, = k, X1 = B(kd,p). Hence, E[X,,1|Xnh = k] = kpd.

Thus, E[Xn41]|Xn] = pdX,. Consequently, E[Xy] = (pd)"~',n>1.
If pd <1, then E[X; +---+Xp] < (1 —pd) ™' = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X] > E[Xi+---+Xn] > C. O

In fact, one can show that pd > 1 = Pr[X =] > 0.

Application: Going Viral

‘c ® O OHO o e OH. o e .‘-\r"

An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy = d4,..., Dy = dk of these X, people, one has
Xn1 = B(dy +---+ dk,p). Hence,

E[Xn+1|X,,: k,Dy =dj,...,Dg :dk] :p(d1 +'~-+dk).
Thus, E[Xn+1 ‘Xn = k.,D1,..4.,Dk] :p(D1 +"‘+Dk).
Consequently, E[Xp.1|Xn = k] = E[p(D1 + -+ -+ Dx)] = pdk.
Finally, E[Xp,1|Xn] = pdXn, and E[X,.1] = pdE[Xp].
We conclude as before.

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that X1, Xz,... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X,] = foralln>1.

Then,
E[Xi+---+ Xz] = LE[Z].

Proof:

E[Xy+---+ Xz|Z = K] = uk.

Thus, E[Xi +---+ Xz|Z] = uZ.

Hence, E[Xj +---+ Xz] = E[uZ] = pE[Z].

Summary

| Conditional Expectation |

» Definition: E[Y|X]:= Y, yPr[Y = y|X = x]
> Properties: E[Y — E[Y|X]h(X)|X] =0; E[E[Y|X]] = E[Y]
> Applications:

» Viral Propagation.
> Wald

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

Linear Estimation: Preamble

Best MMSE, ¥, the value of Y, we choose E[Y].
Given some observation X related to Y.
How do we use that observation to improve our guess about Y?

The idea is to use a function ¥(X) = g(X) of the observation to
estimate Y.

The “right” function is E[X|Y].

A simpler function?

“Simplest” function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.




Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, for n=1,...,100:

Fitted Line,
Weight kg = - 114.3 +{106.5 Height M

Weight kg

Motivation

Example 2: 15 people.
We look at two attributes: (X», Yp) of person n, forn=1,...,15:

LLSE

LLSE[Y|X] - best guess for Y given X.
Theorem
Consider two RVs X, Y with a given distribution Pr{X =x,Y = y].

Then
’ S cov(X,Y)
LIYIX]=Y =E[Y]|+ —~—"
Proof 1: [¥1X] v] var(X)

Y-V =(Y—E[Y]) - SR (X~ E[X]).  E[Y - V]~ 0 by linearity.

Also, E[(Y — V)X] = 0. after a bit of algebra. (next slide)

Combine brown inequalities: £[(Y — V)(c+ dX)] = 0 for any ¢, d.
Since: Y = a4 BX for some o, 3, s0 3¢, d s.it. Y —a—bX =c+dX.
Then, E[(Y - Y)(Y —a—bX)]=0,va,b. Now,

E[(Y—a—bX)?|=E[(Y - V+ Y —a—bX)3

(X — EIX]).

1.'3 1:4 1,’5 1.'6 1,‘7 > )‘. A A S
Height =E[(Y-Y)?+E[(Y—a-bX)?]+0>E[(Y-Y)?.
12 3 4 5
The blue lineis Y = -114.34-106.5X. (X in meters, Y in kg.) ) . . ) This shows that E[(Y — ¥)2] < E[(Y — a— bX)?], for all (a, b).
Best linear fit: Linear Regression. Theline ¥ = a+bX'is the linear regression. Thus ¥ is the LLSE. ]
A Bit of Algebra Estimation Error Estimation Error: A Picture
. ) ) We saw that
Y*YZ(Y*E[Y])*cav\;(r)[()'(r)(X*E[X]). We saw that the LLSE of YglvenX|s L[YlX]ZVZE[Y]#»%)((X;/)(XfE[X])
Hence, E[Y — AY] = 0. We want to show that E[(Y — \A/)X] =0. LY|X] = ¥ = E[Y]+ c?/‘;(r)((),()Y) (X — E[X]). and cov(X.¥)?
Note that — 21— AV )
ote tha LY~ LIYIXIP) = var(v) - =050

El(Y = Y)X]=E[(Y - V)(X - E[X])],
because E[(Y — ¥)E[X]] =0.
Now,

E[(Y - V)(X - EIX])]

= El(Y - EDY)(x - £ - S - D £pay
=0 cov(X, Y) - %var[)q =0. O

() Recall that cov(X, Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].

How good is this estimator?
Or what is the mean squared estimation error?

We find
ET|Y — LIY|X]P] = E[(Y — E[Y] - (cov(X, Y)/var(X))(X — E[X]))?]

o cov(X.,Y)
=E[(Y-E[V])?) fZT(X)E[(YfE[Y])(Xf E[X])]
cov(X,Y)

a0 EIX - EXIP)

cov(X,Y)?

= var(Y)—T(X)A

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.

Here is a picture when E[X] =0,E[Y] =0:
Dimensions correspond to sample points, uniform sample space.

cov(X,Y)?

-)1? ar(Y) -
I ' var(X)

| |2 = var(y) /N

2 cov(X,Y)?
var(X)

Vector Y at dimension o is % Y(o)




Linear Regression Examples

Example 1:

Height
60

Linear Regression

45

50

45

Linear Regression Examples

Example 2:

X

We find:
E[X]=0;E[Y]=0; E[X?] =1/2, E[XY] =1/2;
var[X] = E[X?] — E[X]? = 1/2;cov(X, Y) = E[XY] — E[X]E[Y] =1/2;

COVX.Y) (e Eix)) = X.

LR: ¥ = E[Y]+ var[X]

Linear Regression Examples

Example 3:

We find:

E[X] =0; E[Y] =0; E[X?] = 1/2, E[XY] = —1/2;
var[X] = E[X?] - E[X]? = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;
cov(X,Y)

LR: \?:E[Y]+W

(X—E[X])=—X.

Linear Regression Examples

Example 4:
v
1 ®--0--@
>
3 o O o IR
2 o 0
1 0 0
X
I 2 3 4 5
We find:

E[X] = 3, E[Y] = 2.5; E[X?] = (3/15)(1 + 22 + 32 + 42 4+ 52) = 11,
E[XY]=(1/15)(1 x14+1x2+---+5x4) =8.4;
var[X]=11-9=2;cov(X,Y)=84-3x25=0.9;

LR: ¥ =25+ ?(X—s) =1.15+0.45X.

LR: Another Figure

§ _ cou(X.Y)
slope = ST

Note that

» the LR line goes through (E[X], E[Y])

cov(X.Y)

> its slope is =775y

Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX +cX?

where a,b, ¢ are chosen to minimize E[(Y — a— bX — cX?)].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y—a—bX—cX? =E[Y]-a—bE[X]-cE[X?]

0 = E[(Y-a-bX—cX?)X]=E[XY]—a—bE[X?]-cE[X?]

0 = E[(Y—a—bX—cX?)X? = E[X?Y]-aE[X?] — bE[X®] — cE[X*]

We solve these three equations in the three unknowns (a, b, c).




Note on pedagogy.

We used the projection property to verify MMSE and LLSE.

MMSE: E[h(X)(Y — E(Y|X))] =0 implies E[Y|X] is best predictor
given X.

LLSE: E[L(X)(Y — LLSE(Y|X))] =0 implise LLSE(Y|X) is best linear
predictor given X.

We used calculus to do best Quadratic prediction.
Notes: use calculus to prove optimaliaty of E[Y|X] and LLSE[Y|X].

Summary

Linear Regression

Mean Squared: E[Y] is best mean squared estimator for Y.
MMSE: E[Y|X] is best mean squared estimator for Y given X.

Linear Regression: L[Y|X] = E[Y]+ c%%‘()y) (X —-E[X])

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.
Sample Points “are” distribution in this class.
Statistics: Fix the assumption above.




