Today

Estimation.
MMSE: Best Function that predicts X from Y.
Conditional Expectation.
Finish Linear Regression:
Best linear function prediction of Y given X.

Applications to random processes.



Estimation: ¢s70 style

Given distribution for Y.

What is the distribution?
Probability “mass” function: Pr[Y = y].

What should we guess for the value of Y, before hand?
That is what number ¥ should we predict for Y?



Estimation: Expectation and Mean Squared Error.

Given distribution (probability mass function): Pr[Y = y].

“Best” guess about Y, is E[Y].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let V:= Y —E[Y].
Then, E[Y] = E[Y — E[Y]] = E[Y] - E[Y] =0.
So, E[Yc] =0,Vc. Now,
E[(Y-a?®] = E[(Y~E[Y]+E[Y]-a)]
= E[(Y+c)’)|withc=E[Y]-a
= E[Y?+2Yc+c? = E[V?]+2E[Yc]+c?
= E[Y?]+0+c% > E[V2).

Hence, E[(Y — a)?] > E[(Y — E[Y])?],Va.



Estimation: Preamble

Thus, best guess, ¥, for the value of Y, is E[Y].
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y?



Review

Definitions Let X and Y be RVs on Q.
» Distribution: Pr[Y = y]
» Joint Distribution: Pr[X =x,Y = y]
» Marginal Distribution: PriX =x] =Y, PriX=x,Y =y|

> Conditional Distribution: Pr[Y = y|X = x] = 2=

Whatis ¥, , PriX=x,Y —-y]? 1.

Whatis Y, PriX =x]? 1
Whatis }, PriX=x,Y =y]? Pr[X=x].



Conditional Expectation

Definition Let X and Y be RVs on €. The conditional expectation of
Y given X is defined as

E[Y[X]=9g(X)
where
g(x):=E[Y|X=x]:=) yxPriY =y|X=x].
Fact y
E[Y|X=x]=) Y(w)x Prlo|X =x].
Proof: E[Y|X = x] = E[Y|A] with A= {0 : X(®) = x}. O

What is “X = x"? An event. In the above? The event A="X = x’.
Note: E[Y|X] is a function on values for X that gives a number.

Today: we view as a predicted value for Y.



Properties of CE

E[YIX=x]=Y yxPr[Y=y|X=Xx]
y

Theorem
a) X, Y independent = E[Y|X] = E[Y];

(
(b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
(©) E[Yh(X)|X] = h(X)E[Y|X],vh(.);
(d) E[h(X)E[Y|X]] = E[N(X) Y], Vh(");
(e) E[E[Y|X]] = E[Y].
Proof:

a) Obvious and Pr[Y =y|X =x] = Pr[Y =y]

(
](b)Linearity of expectation in sample space
(c) E[Yh(X)|X =x] = ZY ®))Pr[o|X = x]

—ZY h(x)Pr[w|X = x] = h(x)E[Y|X = x]



Properties of CE
ElY|X=x]= ZyPr[Y y|IX=x]
Theorem
(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],Vh();
(d) E[h(X)E[Y|X]] = E[N(X) Y], Vh(");
(e) E[E[Y|X]] = E[Y].

Proof: (continued)
d) E[A(X)E[Y|X]] =Y h(x)E[Y|X = X]Pr[X = x]

- Zh(x)Zy x PrlY = y|X = x]Pr[X = x]
:Zh Znyr[X X,y =Y]

:Z y><Pr[X x,y =yl = E[h(X)Y].
Xy



Properties of CE

E[Y|X=x]= ZyPr[Y yIX =x]

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY+bZ|X] = aE[Y|X]+bE[Z|X];
(¢) E[Yh(X)|X] = h(X)E[Y|X],Vh();
(d) E[N(X)E[Y|X]] = E[h(X) Y], Vh(-);
(e) E[E[YIX]] = E[Y1].

Proof: (continued)
(e) Let h(X)=1in(d).



Properties of CE

Theorem
(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
(c) E[YA(X)|X] = h(X)E[Y|X].Vh();

(d) E[A(X)E[Y|X]] = E[A(X)Y],Vh(-);
(e) E[E[Y|X]] = E[Y].

Note that (d) says that
E[(Y - E[Y|X])h(X)|X] = 0.

Note: one view is that the estimation error Y — E[Y|X] is orthogonal
to every function h(X) of X.

This the projection property.

It gives that E[Y|X] is best estimator for Y given X.



CE = MMSE (Minimum Mean Squared Estimator)

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].
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CE = MMSE

Theorem CE = MMSE

9(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof: Recall: Expectation of r.v. mimimizes mean squared error.

Sample space X = x: so E[Y|X = x] minimizes mean squared
error.
Proof:
Let h(X) be any function of X. Then
EI(Y—h(X)?] = E[(Y-g(X)+g(X)-h(X))?]
= E[(Y-g(X)]+E[(g(X) - h(X))’]
+2E[(Y — 9(X))(g(X) — h(X))].

But,
E[(Y—9(X))(g(X)— h(X))] = 0 by the projection property.
Thus, E[(Y —h(X))?] > E[(Y — g(X))2].



Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?
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In this example, d = 4.



Application: Going Viral

00 mo][op eofxs
/ VAR

|oooo||oooo|‘oooo

X, =5

Fact: Number of tweets X =Y ,_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:
Given X, = k, X,.1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.

Thus, E[X,.1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[X; 4+ +Xp] < (1 —pd)' = E[X] < (1—pd)~".

If pd > 1, then for all C one can find n s.t.
E[X] > E[Xy+---+Xn] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.



Application: Going Viral
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy = dy,...,Dx = di of these X, people, one has
Xnit1 = B(dy + -+ dk,p). Hence,

E[Xn+1|Xn:k,D1 :d1,...,Dk:dk]:p(d1 ++dk)
Thus, E[Xy11|Xn=k,D4,...,Dg] = p(D1+--- + D).
Consequently, E[X,.1|Xn = k] = E[p(D1 +- - - + Dx)] = pdk.

Finally, E[Xn11]Xn] = pdXp, and E[ X, 1] = pdE[Xn].
We conclude as before.



Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that Xy, X5, ... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] = u foralln>1.

Then,
E[Xi+---+ Xz] = LE[Z].

Proof:

E[Xi+--+Xz|Z =Kk = uk.

Thus, E[X) + -+ Xz|Z] = uZ.

Hence, E[Xi+---+ Xz] = E[uZ] = nE[Z].



Summary

‘ Conditional Expectation ‘

> Definition: E[Y|X] =Y, yPr[Y = y|X = x]
> Properties: E[Y — E[Y|X]h(X)|X]=0; E[E[Y|X]] = E[Y]
> Applications:

> Viral Propagation.
» Wald

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)



Linear Estimation: Preamble

Best MMSE, Y, the value of Y, we choose E[Y].
Given some observation X related to Y.
How do we use that observation to improve our guess about Y?

The idea is to use a function Y(X) = g(X) of the observation to
estimate Y.

The “right” function is E[X]Y].

A simpler function?

“Simplest” function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.



Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, forn=1,...,100:
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The blue lineis Y =—-114.3+106.5X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.



Motivation

Example 2: 15 people.

We look at two attributes: (X, Y,) of person n, for n=1,...,15:
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The line Y = a+ bX is the linear regression.



LLSE

LLSE[Y|X] - best guess for Y given X.
Theorem
Consider two RVs X, Y with a given distribution Pr[X =x,Y =y].

Then
’ cov(X,Y)
Proof 1: LIY|X] = Y= E[Y]+ﬁ(X E[X]).

Y-V =(Y-E[Y])- S (X —EIX]).  E[Y V]~ 0by linearity.

Also, E[(Y — Y)X] — 0. after a bit of algebra. (next slide)

Combine brown inequalities: £[(Y — V)(c dX)] =0 forany c,d.
Since: Y = o+ BX for some «, 3, so 3¢, d s.t. Y —a—bX=c+adX.
Then, E[(Y — Y)(V —a—bX)] =0,va,b. Now,
E[(Y—a—bX)?|=E[(Y-V+V—a-bX)?
= E[(Y-Y)’]+E[(Y—a—bX)?|+0>E[(Y-Y)?.

This shows that E[(Y — ¥)2] < E[(Y —a— bX)?], for all (a,b).
Thus Y is the LLSE. O



A Bit of Algebra

Y-V = (Y- E[Y]) - 2L (X ~ E[X]).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that

E[(Y - V)X]=E[(Y - V)(X - E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y = V)(X — EIX])]

cov(X,Y)
= E[(Y—E[YD(X - E[X])] - T[X]E[(X_ EX)(X - E[X])]
cov(X,Y)

“variX] var[X]=0. O

=0 cov(X,Y) -

() Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].



Estimation Error

We saw that the LLSE of Y given X is

cov(X,Y)

L[Y|X]=Y =E[Y]+ var(X)

(X —E[X]).
How good is this estimator?
Or what is the mean squared estimation error?

We find

E[Y — L[YIX][?] = EI(Y — E[Y] — (cov(X, Y)/var(X))(X — E[X]))?]
cov(X,Y)

= ELY ~EP1 -2 1

E[(Y - E[YD(X - E[X])]

cov(X.,Y)
( var(X)

cov(X,Y)?
var(X)

JZEI(X — E[X])?]

=var(Y)-

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.



Estimation Error: A Picture
We saw that

LYX) = V= DY)+ S0 Elx)
and 2
E[lY - L[Y|X]] = var(Y) - W

Here is a picture when E[X] =0, E[Y] =0:
Dimensions correspond to sample points, uniform sample space.

(v v\2
cov( X, Y)”

var(X)

? = var(Y)

”2 ‘('ut'[)&'.}"j@
var(X)

Vector Y at dimension o is - Y(o)

B



Linear Regression Examples

Example 1:

Height
g0

Linear Regression

54
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Linear Regression Examples

Example 2:

We find:

E[X]=0;E[Y] =0; E[X?] =1/2; E[XY] =1/2;
var[X] = E[X?] - E[X]? =1/2;cov(X,Y) = E[XY] - E[X]E[Y] =1/2;
cov(X,Y)

LR: ¥ = E[Y]+ var(X]

(X — E[X]) = X.



Linear Regression Examples

Example 3:

¥

We find:

E[X] =0;E[Y] =0; E[X?] =1/2, E[XY] = —1/2;

var[X] = E[X?]— E[X]? = 1/2;cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;

cov(X,Y)
var[X]

LR: ¥ = E[Y] + (X —E[X])=—X.



Linear Regression Examples
Example 4:

We find:

E[X] = 3;E[Y] =25, E[X?] = (3/15)(1+2° + 3% + 4%+ 5°) = 11;
E[XY]=(1/15)(1 x 1+1x2+..-+5x4) =8.4;
var[X] =11-9=2;cov(X,Y)=84-3x25=0.9;

LR: Y =25+ %ﬁ(x—3) =1.15+0.45X.



LR: Another Figure

E[Y]

E[X]

I _ eov(X,Y
SlOpE T var[X]

Note that

> the LR line goes through (E[X], E[Y])

> its slope is SET).



Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?

where a, b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y-—a—bX-cX?=E[Y]-a-bE[X]-cE[X?]
0 = E[(Y—a-bX—cX?)X]=E[XY]—a—bE[X?]—-cE[X?
0 = E[(Y-a—bX—cX?)X?]=E[X2Y]-aE[X?] - bE[X®] - cE[X*]

We solve these three equations in the three unknowns (a, b, c).



Note on pedagogy.

We used the projection property to verify MMSE and LLSE.

MMSE: E[h(X)(Y — E(Y|X))] = 0 implies E[Y|X] is best predictor
given X.

LLSE: E[L(X)(Y — LLSE(Y|X))] =0 implise LLSE(Y|X) is best linear
predictor given X.

We used calculus to do best Quadratic prediction.
Notes: use calculus to prove optimaliaty of E[Y|X] and LLSE[Y|X].



Summary

‘ Linear Regression ‘

Mean Squared: E[Y] is best mean squared estimator for Y.

MMSE: E[Y|X] is best mean squared estimator for Y given X.
Linear Regression: L[Y|X] = E[Y]+ COVX (X - E[X])

var(X)

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.
Sample Points “are” distribution in this class.
Statistics: Fix the assumption above.



