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(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
(c) E[YA(X)|X] = h(X)E[Y|X].Vh();

(d) E[A(X)E[Y|X]] = E[A(X)Y],Vh(-);
(e) E[E[Y|X]] = E[Y].

Note that (d) says that
E[(Y - E[Y|X])h(X)|X] = 0.

Note: one view is that the estimation error Y — E[Y|X] is orthogonal
to every function h(X) of X.

This the projection property.

It gives that E[Y|X] is best estimator for Y given X.
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Theorem CE = MMSE

9(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof: Recall: Expectation of r.v. mimimizes mean squared error.

Sample space X = x: so E[Y|X = x] minimizes mean squared
error.
Proof:
Let h(X) be any function of X. Then
EI(Y—h(X)?] = E[(Y-g(X)+g(X)-h(X))?]
= E[(Y-g(X)]+E[(g(X) - h(X))’]
+2E[(Y — 9(X))(g(X) — h(X))].

But,
E[(Y—9(X))(g(X)— h(X))] = 0 by the projection property.
Thus, E[(Y —h(X))?] > E[(Y — g(X))2].
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Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

[0 0p o] [0 p & 0] =3
/ VAR

‘O ®@ O OHO o @ OH. c @ .‘X-1=5

In this example, d = 4.
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Fact: Number of tweets X =Y ,_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:
Given X, = k, X,.1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.

Thus, E[X,.1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[X; 4+ +Xp] < (1 —pd)' = E[X] < (1—pd)~".

If pd > 1, then for all C one can find n s.t.
E[X] > E[Xy+---+Xn] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy = dy,...,Dx = di of these X, people, one has
Xnit1 = B(dy + -+ dk,p). Hence,

E[Xn+1|Xn:k,D1 :d1,...,Dk:dk]:p(d1 ++dk)
Thus, E[Xy11|Xn=k,D4,...,Dg] = p(D1+--- + D).
Consequently, E[X,.1|Xn = k] = E[p(D1 +- - - + Dx)] = pdk.

Finally, E[Xn11]Xn] = pdXp, and E[ X, 1] = pdE[Xn].
We conclude as before.
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Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that Xy, X5, ... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] = u foralln>1.

Then,
E[Xi+---+ Xz] = LE[Z].

Proof:

E[Xi+--+Xz|Z =Kk = uk.

Thus, E[X) + -+ Xz|Z] = uZ.

Hence, E[Xi+---+ Xz] = E[uZ] = nE[Z].
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> Applications:
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» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)
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Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, forn=1,...,100:
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The blue lineis Y =—-114.3+106.5X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.
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Example 2: 15 people.

We look at two attributes: (X, Y,) of person n, for n=1,...,15:

v
A

4 Q--0--0

3
i+ bX,

2

1 O O (X'.r.".}/n}

Ll ¢

L 2 3 4 5

The line Y = a+ bX is the linear regression.
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A Bit of Algebra

Y-V = (Y- E[Y]) - 2L (X ~ E[X]).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that

E[(Y - V)X]=E[(Y - V)(X - E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y = V)(X — EIX])]

cov(X,Y)
= E[(Y—E[YD(X - E[X])] - T[X]E[(X_ EX)(X - E[X])]
cov(X,Y)

“variX] var[X]=0. O

=0 cov(X,Y) -

() Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].
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L[Y|X]=Y =E[Y]+ var(X)

(X —E[X]).
How good is this estimator?
Or what is the mean squared estimation error?

We find

E[Y — L[YIX][?] = EI(Y — E[Y] — (cov(X, Y)/var(X))(X — E[X]))?]
cov(X,Y)

= ELY ~EP1 -2 1

E[(Y - E[YD(X - E[X])]

cov(X.,Y)
( var(X)

cov(X,Y)?
var(X)

JZEI(X — E[X])?]

=var(Y)-

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.
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We saw that

LYX) = V= DY)+ S0 Elx)
and 2
E[lY - L[Y|X]] = var(Y) - W

Here is a picture when E[X] =0, E[Y] =0:
Dimensions correspond to sample points, uniform sample space.

(v v\2
cov( X, Y)”

var(X)

? = var(Y)

”2 ‘('ut'[)&'.}"j@
var(X)

Vector Y at dimension o is - Y(o)
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We find:

E[X]=0;E[Y] =0; E[X?] =1/2; E[XY] =1/2;
var[X] = E[X?] - E[X]? =1/2;cov(X,Y) = E[XY] - E[X]E[Y] =1/2;
cov(X,Y)

LR: ¥ = E[Y]+ var(X]

(X — E[X]) = X.
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Example 3:

¥

We find:

E[X] =0;E[Y] =0; E[X?] =1/2, E[XY] = —1/2;

var[X] = E[X?]— E[X]? = 1/2;cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;

cov(X,Y)
var[X]

LR: ¥ = E[Y] + (X —E[X])=—X.
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We find:

E[X] = 3;E[Y] =25, E[X?] = (3/15)(1+2° + 3% + 4%+ 5°) = 11;
E[XY]=(1/15)(1 x 1+1x2+..-+5x4) =8.4;
var[X] =11-9=2;cov(X,Y)=84-3x25=0.9;

LR: Y =25+ %ﬁ(x—3) =1.15+0.45X.
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E[Y]

E[X]

I _ eov(X,Y
SlOpE T var[X]

Note that

> the LR line goes through (E[X], E[Y])

> its slope is SET).
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Note on pedagogy.

We used the projection property to verify MMSE and LLSE.

MMSE: E[h(X)(Y — E(Y|X))] = 0 implies E[Y|X] is best predictor
given X.

LLSE: E[L(X)(Y — LLSE(Y|X))] =0 implise LLSE(Y|X) is best linear
predictor given X.

We used calculus to do best Quadratic prediction.
Notes: use calculus to prove optimaliaty of E[Y|X] and LLSE[Y|X].
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Summary

‘ Linear Regression ‘

Mean Squared: E[Y] is best mean squared estimator for Y.

MMSE: E[Y|X] is best mean squared estimator for Y given X.
Linear Regression: L[Y|X] = E[Y]+ COVX (X - E[X])

var(X)

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.
Sample Points “are” distribution in this class.
Statistics: Fix the assumption above.



