Calculus Review

 $\frac{d(e^{cx})}{dx} = ce^{cx}.$ Grows proportional to what you have! $e = (1 + 1/n)^n$.

$$\frac{\frac{d(x^2)}{dx} = 2x.}{\frac{(x+\delta)^2 - x^2}{\delta} = \frac{2x\delta + \delta^2}{\delta} = 2x + \delta.$$

 $\int x dx = \frac{x^2}{2} + c.$

Fundamental Theorem. or Triangle: width x, height x has area $\frac{x^2}{2}$.

$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$

$$x = e^{y} \implies 1 = e^{y} \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}.$$
Flipping *x* and *y* axis, flips slope and function and argument.
Chain Rule: $\frac{d(f(g(x)))}{dx} = f'(g(x))g'(x)dx$
Slope of $g(\cdot)$ times slope of $f(\cdot)$ at appropriate values.

Product Rule:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

$$d(uv) = udv + vdu$$

$$Cuz:d(uv) = uv - (u + du)(v + dv) = udv + vdu + dudv.$$

Integration by Parts: $\int udv = uv - \int vdu.$

Summary

Continuous Probability 1

- 1. pdf: $Pr[X \in (x, x + \delta]] \approx f_X(x)\delta$. 2. CDF: $Pr[X < x] = F_X(x) = \lim_{\delta \to 0} \sum_i f_X(x_i) \delta = \int_{-\infty}^x f_X(y) dy$. 3. $X \sim U[a,b]$: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$; $F_X(x) = \frac{x-a}{b-a}$ for $a \le x \le b$. 4. $X \sim Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbf{1}\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \le 0.$ 5. Target: $f_X(x) = 2x \cdot 1\{0 \le x \le 1\}$; $F_X(x) = x^2$ for $0 \le x \le 1$. 6. Joint pdf: $Pr[X \in (x, x + \delta), Y = (y, y + \delta)] = f_{X,Y}(x, y)\delta^2$. 6.1 Conditional Distribution: $f_{X|Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_{x,Y}(x,y)}$.
 - 6.2 Independence: $f_{X|Y}(x, y) = f_X(x)$

Poll

What is true? X has CDF F(x) and PDF f(x). (A) Pr[X > t] = 1 - Pr[X < t].Event X > t is the event that X is not $\leq t$. (B) S(t) = Pr[X > t] = 1 - F(t). Definition of CDF. (C) Y = 2X, $f_Y(y) = 2f(y)$. False. Confuses density of outcome with value oof outcome. (D) Y = 2X, $F_Y(y) = F(y/2)$. Event Y > y is event X > y/2. (E) Y = 2X, $f_Y(y) = \frac{1}{2}f(y/2)$. Spreads out density of X over twice the range.

Chain rule from (D).

(A), (B), (D) think events, (E) think event and density.

(C) confuses probability density of outcome with value of outcome.

Discrete/Continuous

Discrete: Probability of outcome \rightarrow random variables, events.

Continuous: "outcome" is real number. Probability: Events is interval. Density: $Pr[X \in [x, x + dx]] = f(x)dx$

dx $Pr[X \in [x, x + dx]] \approx f(x)dx$

dx

Joint Continuous in *d* variables: "outcome" is $\in \mathbb{R}^d$. Probability: Events is block. Density: $Pr[(X, Y) \in ([x, x + dx], [y, y + dx])] = f(x, y)dxdy$ $dy \longrightarrow Pr[(X, Y) \in ([x, x + dx], [y, y + dy])] \approx f(x, y)dxdy$

Probability

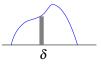
Probability! Challenges us. But really neat. At times, continuous. At others, discrete.

Sample Space: Ω , $Pr[\omega]$. Event: $Pr[A] = \sum_{\omega \in A} Pr[\omega]$ $\sum_{\omega} Pr[\omega] = 1$. Random variables: $X(\omega)$. Distribution: Pr[X = x] $\sum_{x} Pr[X = x] = 1$.

Continuous as Discrete. $Pr[X \in [x, x + \delta]] \approx f(x)\delta$ Random Variable: *X*, Range is reals.

Event:
$$A = [a, b], Pr[X \in A],$$

CDF: $F(x) = Pr[X \le x].$
PDF: $f(x) = \frac{dF(x)}{dx}.$
 $\int_{-\infty}^{\infty} f(x) = 1.$



Probability Rules are all good.

Conditional Probability. Events: A.B. Discrete: "Heads", "Tails", X = 1. Y = 5. Continuous: X in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A\cap B]}{Pr[B]}$ Pr["Second Heads"|"First Heads"], $Pr[X \in [.2, .3] | X \in [.2, .3] \text{ or } X \in [.5, .6]].$ Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[TH]B is First coin heads. $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$ *B* is $X \in [0, .5]$ Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$. Bayes Rule: Pr[A|B] = Pr[B|A]Pr[A]/Pr[B].

All work for continuous with intervals as events.

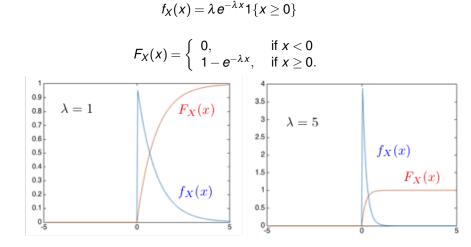
Conditional density.

Conditional Density: $f_{X|Y}(x, y)$. Conditional Probability: $Pr[X \in A | Y \in B] = \frac{Pr[X \in A, Y \in B]}{Pr[Y \in B]}$ $Pr[X \in [x, x + dx] | Y \in [y, y + dy]] = \frac{f_{X,Y}(x,y)dxdy}{f_Y(y)dy}$ $f_{X|Y}(x, y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{+\infty} f_{X,Y}(x,y)dx}$

Corollary: For independent random variables, $f_{X|Y}(x, y) = f_X(x)$.

 $Expo(\lambda)$

The exponential distribution with parameter $\lambda > 0$ is defined by



Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

Some Properties

1. *Expo* is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is as good as new.'

2. Scaling *Expo*. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$\begin{aligned} \Pr[Y > t] &= \Pr[aX > t] = \Pr[X > t/a] \\ &= e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = \Pr[Z > t] \text{ for } Z = Expo(\lambda/a). \end{aligned}$$

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$. Also, $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$.

More Properties

3. Scaling Uniform. Let X = U[0, 1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y+\delta)] = Pr[a+bX \in (y, y+\delta)] = Pr[X \in (\frac{y-a}{b}, \frac{y+\delta-a}{b})]$$
$$= Pr[X \in (\frac{y-a}{b}, \frac{y-a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y-a}{b} < 1$$
$$= \frac{1}{b}\delta, \text{ for } a < y < a+b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

Replace b by b-a, use X = U[0,1], then Y = a + (b-a)X is U[a,b].

Some More Properties

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y+\delta)] = Pr[a+bX \in (y, y+\delta)] = Pr[X \in (\frac{y-a}{b}, \frac{y+\delta-a}{b})]$$
$$= Pr[X \in (\frac{y-a}{b}, \frac{y-a}{b} + \frac{\delta}{b})] = f_X(\frac{y-a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b})$$

Expectation

Definition: The expectation of a random variable X with pdf f(x) is defined as

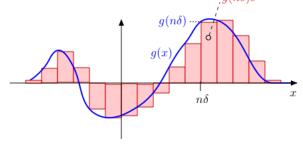
$$\Xi[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

1

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any *g*, one has $\int g(x) dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = x f_X(x)$.



Examples of Expectation

1.
$$X = U[0, 1]$$
. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 1 dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

2. $X = \text{distance to 0 of dart shot uniformly in unit circle. Then } f_X(x) = 2x1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_0^1 = \frac{2}{3}.$$

Examples of Expectation

3.
$$X = Expo(\lambda)$$
. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_a^b u(x)dv(x) = [u(x)v(x)]_a^b - \int_a^b v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_a^b v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

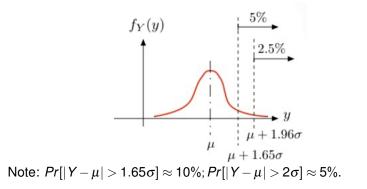
Hence, $E[X] = \frac{1}{\lambda}$.

Normal (Gaussian) Distribution.

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

Standard normal has $\mu = 0$ and $\sigma = 1$.



Scaling and Shifting and properties

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu$$
 and $var[Y] = \sigma^2$.

Review: Law of Large Numbers.

Theorem: Independent identically distributed random variables, X_i ,

 $A_n = \frac{1}{n} \sum X_i$ "tends to the mean."

Each X_i , has $\mu = E(X_i)$ and $\sigma^2 = var(X_i)$.

Mean of A_n is μ , and variance is σ^2/n .

Used Chebyshev.

$$\Pr[|A_n - \mu| > \varepsilon] \le rac{\operatorname{var}[A_n]}{\varepsilon^2} = rac{\sigma^2}{n\varepsilon} o 0.$$

Central Limit Theorem

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n
ightarrow \mathcal{N}(0,1), ext{as } n
ightarrow \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

Note:

$$E(S_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0$$
$$Var(S_n) = \frac{1}{\sigma^2/n} Var(A_n) = 1.$$

Confidence Intervals.

Recall: $A_n = \frac{1}{n} \sum X_i$, for X_i identical and independent.

For $\mu = E(X_i)$ and variance σ^2 . Mean of A_n is μ , and variance is σ^2/n .

Recall Chebyshev: $Pr[|A_n - \mu| > \varepsilon] \le \frac{var[A_n]}{\varepsilon^2}$

Implies to get confidence $1 - \delta$ we need

 $\frac{\textit{varA}_n}{\epsilon^2} = \frac{1}{n} \frac{\sigma^2}{\epsilon^2} \le \delta \text{ or } n \ge \frac{\sigma^2}{\epsilon^2} \frac{1}{\delta}$

Central Limit Theorem:

$$\Pr[|A_n - \mu| > \varepsilon] \le C \int_{x \ge \varepsilon}^{\infty} e^{-\frac{x^2}{2 \operatorname{var} A_n}} \le C e^{-\frac{\varepsilon^2}{2 \operatorname{var} A_n}}$$

for $\varepsilon > \sqrt{VarA_n}$ (*C* is roughly $2/\sqrt{2\pi}$)

Implies to get confidence $1 - C\delta$ we need

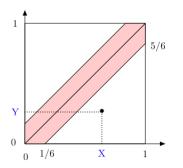
$$e^{-rac{arepsilon^2}{2 ext{varA}}} \leq \delta \implies -rac{narepsilon^2}{2\sigma^2} \leq \log\delta \implies n \geq rac{2\sigma^2}{arepsilon^2}\lograc{1}{\delta}.$$

Examples: Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes.

What is the probability they meet?



Thus, $Pr[meet] = 1 - (\frac{5}{6})^2 = \frac{11}{36}$.

Here, (X, Y) are the times when the friends reach the restaurant.

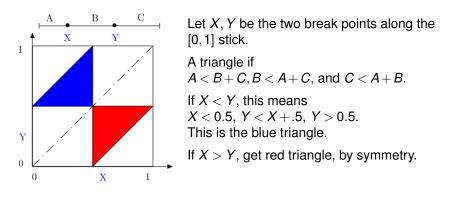
The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



Thus, Pr[make triangle] = 1/4.

Maximum of Two Exponentials

Let
$$X = Expo(\lambda)$$
 and $Y = Expo(\mu)$ be independent.
Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Since, $\int_0^\infty x \lambda e^{-\lambda x} dx = \lambda \left[-\frac{xe^{-\lambda x}}{\lambda} - \frac{e^{-\lambda x}}{\lambda^2} \right]_0^\infty = \frac{1}{\lambda}$.

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}.$$

Minimum of *n* i.i.d. Exponentials.

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \min\{X_1, X_2, ..., X_n\}$. What is true?

(A) Z is exponential. (B) Parameter is n. (C) $\lim_{N\to\infty} (1-n/N)^N \to e^{-n}$ (D) E[Z] = 1/n.

(C) is an argument for (A), (B) and (D).

Maximum of *n* i.i.d. Exponentials

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$. Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \ldots, X_n\} + \max Y_1, \ldots, Y_{n-1}. \qquad Y_i \sim Expo(1).$$

From memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, \dots, X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

because the minimum of *Expo* is *Expo* with the sum of the rates.

Hence,

$$E[Z] = A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = H(n).$$

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. *Y* - closest multiple of 2^{-n} to *X*. Represent *Y* with *n* bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that *Z* is uniform in $[-a, a = 2^{-(n)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal X is $E[X^2] = \frac{1}{3}$.

Quantization Noise

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

```
SNR(dB) = 10 \log_{10}(SNR) = 20(n+1) \log_{10}(2) \approx 6(n+1).
```

For instance, if n = 16, then $SNR(dB) \approx 112 dB$.

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

= $\frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$
= $\frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3: What about in *n* dimensions? $\frac{n}{6}$.

Summary

Continuous Probability

- Continuous RVs are similar to discrete RVs
- ▶ Think that $X \in [x, x + \varepsilon]$ with probability $f_X(x)\varepsilon$
- Sums become integrals,
- The exponential distribution is magical: memoryless.