
Calculus Review
d(ecx )

dx = cecx .

Grows proportional to what you have! e = (1+1/n)n.
d(x2)

dx = 2x .
(x+δ )2−x2

δ
= 2xδ+δ 2

δ
= 2x +δ .∫

xdx = x2

2 +c.
Fundamental Theorem. or Triangle: width x , height x has area x2

2 .
d(lnx)

dx = 1
x

x = ey =⇒ 1 = ey dy
dx =⇒ dy

dx = 1
ey = 1

x .
Flipping x and y axis, flips slope and function and argument.

Chain Rule: d(f (g(x))
dx = f ′(g(x))g′(x)dx

Slope of g(·) times slope of f (·) at appropriate values.

Product Rule:
(f (x)g(x))′ = f ′(x)g(x)+ f (x)g′(x).
d(uv) = udv +vdu

Cuz:d(uv) = uv − (u+du)(v +dv) = udv +vdu+dudv .

Integration by Parts:
∫

udv = uv −
∫

vdu.
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Summary

Continuous Probability 1

1. pdf:

Pr [X ∈ (x ,x +δ ]]≈ fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) = limδ→0 ∑i fX (xi)δ =
∫ x
−∞

fX (y)dy .

3. X ∼ U[a,b]: fX (x) = 1
b−a 1{a ≤ x ≤ b};FX (x) = x−a

b−a for a ≤ x ≤ b.

4. X ∼ Expo(λ ):
fX (x) = λ exp{−λx}1{x ≥ 0};FX (x) = 1− exp{−λx} for x ≤ 0.

5. Target: fX (x) = 2x ·1{0 ≤ x ≤ 1};FX (x) = x2 for 0 ≤ x ≤ 1.

6. Joint pdf: Pr [X ∈ (x ,x +δ ),Y = (y ,y +δ )) = fX ,Y (x ,y)δ 2.

6.1 Conditional Distribution: fX |Y (x ,y) =
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Poll

What is true?
X has CDF F (x) and PDF f (x).

(A) Pr [X > t ] = 1−Pr [X ≤ t ].
Event X > t is the event that X is not ≤ t .

(B) S(t) = Pr [X > t ] = 1−F (t).
Definition of CDF.

(C) Y = 2X , fY (y) = 2f (y).
False. Confuses density of outcome with value oof outcome.

(D) Y = 2X , FY (y) = F (y/2).
Event Y > y is event X > y/2.

(E) Y = 2X , fY (y) = 1
2 f (y/2).

Spreads out density of X over twice the range.
Chain rule from (D).

(A), (B), (D) think events, (E) think event and density.

(C) confuses probability density of outcome with value of outcome.
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Discrete/Continuous

Discrete: Probability of outcome → random variables, events.

Continuous: “outcome” is real number.
Probability: Events is interval.
Density: Pr [X ∈ [x ,x +dx ]] = f (x)dx

Pr [X ∈ [x ,x +dx ]]≈ f (x)dx

dx

Joint Continuous in d variables: “outcome” is ∈ Rd .
Probability: Events is block.
Density: Pr [(X ,Y ) ∈ ([x ,x +dx ], [y ,y +dx ])] = f (x ,y)dxdy

dx

dy Pr [(X ,Y ) ∈ ([x ,x +dx ], [y ,y +dy ])]≈ f (x ,y)dxdy
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Probability

Probability!
Challenges us. But really neat.
At times, continuous.
At others, discrete.

Sample Space:Ω, Pr [ω].
Event: Pr [A] = ∑ω∈A Pr [ω]

∑ω Pr [ω] = 1.
Random variables: X (ω).
Distribution: Pr [X = x ]

∑x Pr [X = x ] = 1.

Random Variable: X , Range is
reals.

Event: A = [a,b], Pr [X ∈ A],
CDF: F (x) = Pr [X ≤ x ].
PDF: f (x) = dF (x)

dx .∫
∞

−∞
f (x) = 1.

Continuous as Discrete.
Pr [X ∈ [x ,x +δ ]]≈ f (x)δ

δ
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Probability Rules are all good.

Conditional Probability.

Events: A,B

Discrete: “Heads”, “Tails”, X = 1, Y = 5.

Continuous: X in [.2, .3]. X ∈ [.2, .3] or X ∈ [.4, .6].

Conditional Probability: Pr [A|B] = Pr [A∩B]
Pr [B]

Pr [“Second Heads”|“First Heads”],
Pr [X ∈ [.2, .3]|X ∈ [.2, .3] or X ∈ [.5, .6]].

Total Probability Rule: Pr [A] = Pr [A∩B]+Pr [A∩B]
Pr [“Second Heads”] = Pr [HH]+Pr [TH]

B is First coin heads.
Pr [X ∈ [.45, .55]] = Pr [X ∈ [.45, .50]]+Pr [X ∈ (.50, .55]]

B is X ∈ [0, .5]

Product Rule: Pr [A∩B] = Pr [A|B]Pr [B].
Bayes Rule: Pr [A|B] = Pr [B|A]Pr [A]/Pr [B].

All work for continuous with intervals as events.
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Conditional density.

Conditional Density: fX |Y (x ,y).

Conditional Probability: Pr [X ∈ A|Y ∈ B] = Pr [X∈A,Y∈B]
Pr [Y∈B]

Pr [X ∈ [x ,x +dx ]|Y ∈ [y ,y +dy ]] = fX ,Y (x ,y)dxdy
fY (y)dy

fX |Y (x ,y) =
fX ,Y (x ,y)

fY (y) =
fX ,Y (x ,y)∫+∞

−∞ fX ,Y (x ,y)dx

Corollary: For independent random variables, fX |Y (x ,y) = fX (x).
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Expo(λ )
The exponential distribution with parameter λ > 0 is defined by

fX (x) = λe−λx1{x ≥ 0}

FX (x) =
{

0, if x < 0
1−e−λx , if x ≥ 0.

Note that Pr [X > t ] = e−λ t for t > 0.
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Some Properties

1. Expo is memoryless. Let X = Expo(λ ). Then, for s, t > 0,

Pr [X > t +s | X > s] =
Pr [X > t +s]

Pr [X > s]

=
e−λ (t+s)

e−λs = e−λ t

= Pr [X > t ].

‘Used is as good as new.’

2. Scaling Expo. Let X = Expo(λ ) and Y = aX for some a > 0. Then

Pr [Y > t ] = Pr [aX > t ] = Pr [X > t/a]

= e−λ (t/a) = e−(λ/a)t = Pr [Z > t ] for Z = Expo(λ/a).

Thus, a×Expo(λ ) = Expo(λ/a).

Also, Expo(λ ) = 1
λ

Expo(1).
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More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+bX where b > 0.
Then,

Pr [Y ∈ (y ,y +δ )] = Pr [a+bX ∈ (y ,y +δ )] = Pr [X ∈ (
y −a

b
,
y +δ −a

b
)]

= Pr [X ∈ (
y −a

b
,
y −a

b
+

δ

b
)] =

1
b

δ , for 0 <
y −a

b
< 1

=
1
b

δ , for a < y < a+b.

Thus, fY (y) = 1
b for a < y < a+b. Hence, Y = U[a,a+b].

Replace b by b−a, use X = U[0,1], then Y = a+(b−a)X is U[a,b].
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Expectation
Definition:

The expectation of a random variable X with pdf f (x) is
defined as

E [X ] =
∫

∞

−∞

xfX (x)dx .

Justification: Say X = nδ w.p. fX (nδ )δ for n ∈ Z. Then,

E [X ] = ∑
n
(nδ )Pr [X = nδ ] = ∑

n
(nδ )fX (nδ )δ =

∫
∞

−∞

xfX (x)dx .

Indeed, for any g, one has
∫

g(x)dx ≈ ∑n g(nδ )δ . Choose
g(x) = xfX (x).
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3. X = Expo(λ ). Then, fX (x) = λe−λx1{x ≥ 0}. Thus,

E [X ] =
∫

∞

0
xλe−λxdx =−

∫
∞

0
xde−λx .

Recall the integration by parts formula:∫ b

a
u(x)dv(x) =
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u(x)v(x)

]b
a −

∫ b

a
v(x)du(x)

= u(b)v(b)−u(a)v(a)−
∫ b

a
v(x)du(x).

Thus, ∫
∞

0
xde−λx = [xe−λx ]∞0 −

∫
∞

0
e−λxdx

= 0−0+
1
λ

∫
∞

0
de−λx = − 1

λ
.

Hence, E [X ] = 1
λ
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Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian)

random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ]≈ 10%;Pr [|Y −µ|> 2σ ]≈ 5%.
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Scaling and Shifting and properties

Theorem Let X = N (0,1) and Y = µ +σX . Then

Y = N (µ,σ2).

Theorem If Y = N (µ,σ2), then

E [Y ] = µ and var [Y ] = σ
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Review: Law of Large Numbers.

Theorem: Independent identically distributed random variables, Xi ,

An = 1
n ∑Xi “tends to the mean.”

Each Xi , has µ = E(Xi) and σ2 = var(Xi).

Mean of An is µ, and variance is σ2/n.

Used Chebyshev.

Pr [|An −µ|> ε]≤ var [An]

ε2 =
σ2

nε
→ 0.
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Central Limit Theorem

Let X1,X2, . . . be i.i.d. with E [X1] = µ and var(X1) = σ2. Define

Sn :=
An −µ

σ/
√

n
=

X1 + · · ·+Xn −nµ

σ
√

n
.

Then,
Sn → N (0,1),as n → ∞.

That is,

Pr [Sn ≤ α]→ 1√
2π

∫
α

−∞

e−x2/2dx .

Proof: See EE126.

Note:

E(Sn) =
1

σ/
√

n
(E(An)−µ) = 0

Var(Sn) =
1

σ2/n
Var(An) = 1.
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Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤

var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need

varAn
ε2 = 1

n
σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤

C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ

=⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ

=⇒ n ≥ 2σ2

ε2 log 1
δ

.



Confidence Intervals.

Recall: An = 1
n ∑Xi , for Xi identical and independent.

For µ = E(Xi) and variance σ2. Mean of An is µ, and variance is
σ2/n.

Recall Chebyshev: Pr [|An −µ|> ε]≤ var [An]

ε2

Implies to get confidence 1−δ we need
varAn

ε2 = 1
n

σ2

ε2 ≤ δ or n ≥ σ2

ε2
1
δ

Central Limit Theorem:

Pr [|An −µ|> ε]≤ C
∫

∞

x≥ε
e− x2

2varAn ≤ Ce− ε2
2varAn

for ε >
√

VarAn (C is roughly 2/
√

2π)

Implies to get confidence 1−Cδ we need

e− ε2
2varA ≤ δ =⇒ − nε2

2σ2 ≤ logδ =⇒ n ≥ 2σ2

ε2 log 1
δ

.



Examples: Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes.

What is the probability they meet?
Here, (X ,Y ) are the times when
the friends reach the restaurant.

The shaded area are the pairs
where |X −Y |< 1/6, i.e., such
that they meet.

The complement is the sum of two
rectangles. When you put them
together, they form a square with
sides 5/6.

Thus, Pr [meet] = 1− (5
6 )

2 = 11
36 .
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Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

Let X ,Y be the two break points along the
[0,1] stick.

A triangle if
A < B+C,B < A+C, and C < A+B.

If X < Y , this means
X < 0.5, Y < X + .5, Y > 0.5.
This is the blue triangle.

If X > Y , get red triangle, by symmetry.

Thus, Pr [make triangle] = 1/4.
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Maximum of Two Exponentials

Let X = Expo(λ ) and Y = Expo(µ) be independent.
Define Z =max{X ,Y}.

Calculate E [Z ].

We compute fZ , then integrate.

One has

Pr [Z < z] = Pr [X < z,Y < z] = Pr [X < z]Pr [Y < z]

= (1−e−λz)(1−e−µz) = 1−e−λz −e−µz +e−(λ+µ)z

Thus,
fZ (z) = λe−λz +µe−µz − (λ +µ)e−(λ+µ)z ,∀z > 0.

Since,
∫

∞

0 xλe−λxdx = λ [− xe−λx

λ
− e−λx

λ 2 ]∞0 = 1
λ

.

E [Z ] =
∫

∞

0
zfZ (z)dz =

1
λ
+

1
µ
− 1

λ +µ
.
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Minimum of n i.i.d. Exponentials.

Let X1, . . . ,Xn be i.i.d. Expo(1).

Define Z =min{X1,X2, . . . ,Xn}.

What is true?

(A) Z is exponential.
(B) Parameter is n.
(C) limN→∞(1−n/N)N → e−n

(D) E [Z ] = 1/n.

(C) is an argument for (A), (B) and (D).
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Maximum of n i.i.d. Exponentials

Let X1, . . . ,Xn be i.i.d. Expo(1). Define Z =max{X1,X2, . . . ,Xn}.

Calculate E [Z ].

We use a recursion. The key idea is as follows:

Z =min{X1, . . . ,Xn}+maxY1, . . . ,Yn−1. Yi ∼ Expo(1).

From memoryless property of the exponential.

Let then An = E [Z ]. We see that

An = E [min{X1, . . . ,Xn}]+An−1

=
1
n
+An−1

because the minimum of Expo is Expo with the sum of the rates.

Hence,

E [Z ] = An = 1+
1
2
+ · · ·+ 1

n
= H(n).
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Let then An = E [Z ]. We see that

An = E [min{X1, . . . ,Xn}]+An−1

=
1
n
+An−1

because the minimum of Expo is Expo with the sum of the rates.

Hence,

E [Z ] = An = 1+
1
2
+ · · ·+ 1

n
= H(n).
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Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y - closest multiple of
2−n to X . Represent Y with n bits. The error is Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [−a,a = 2−(n)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .
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Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10 log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.
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Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at
random in [0,1].

What is E [(X −Y )2]?

Analysis: One has

E [(X −Y )2] = E [X 2 +Y 2 −2XY ]

=
1
3
+

1
3
−2

1
2

1
2

=
2
3
− 1

2
=

1
6
.

Problem 2: What about in a unit square?

Analysis: One has

E [||X−Y||2] = E [(X1 −Y1)
2]+E [(X2 −Y2)

2]

= 2× 1
6
.

Problem 3: What about in n dimensions? n
6 .
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▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical:

memoryless.



Summary

Continuous Probability

▶ Continuous RVs are similar to discrete RVs

▶ Think that X ∈ [x ,x + ε] with probability fX (x)ε

▶ Sums become integrals, ....

▶ The exponential distribution is magical: memoryless.


