Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the
[0, 1] stick.

A triangle if

A<B+C,B<A+C,and C<A+B.

If X <Y, this means

X <05 Y<X+.5 Y>05.

This is the blue triangle.

If X > Y, get red triangle, by symmetry.

Thus, Pr[make triangle] = 1/4.

Maximum of Two Exponentials
Let X = Expo(A) and Y = Expo(u) be independent.
Define Z = max{X, Y}.
Calculate E[Z].
We compute fz, then integrate.

One has
Priz<z] = PriX<z,Y<zl=PrIX<2z]PrlY <Z]
= (1—e*M)(1—e)=1-e*?_gr 4o *tn?
Thus,

f2(z) = Ae* fpeh2 — (A +u)e M7 vz > 0.

—Ax e Ax
]

Since, [y’ xAe MXdx = A[- 2= — e

ElZ] = /:zfz(z)dz: LA

Minimum of ni.i.d. Exponentials.

Let Xi,..., X, be i.i.d. Expo(1). Define Z = min{Xy,Xo,...,Xn}.
What is true?

A) Z is exponential.

) Parameter is n.

) limy (1 —n/N)N — g7
) E[Z]=1/n.
)

(
(
(
(
(C) is an argument for (A), (B) and (D).

Maximum of ni.i.d. Exponentials

Let Xi,...,X, be i.i.d. Expo(1). Define Z = max{X1, Xz, ..., Xn}.
Calculate E[Z].
We use a recursion. The key idea is as follows:

Z=min{Xi..... X} +max V..., Yo 1. Vi~ Expo(1).
From memoryless property of the exponential.
Let then A, = E[Z]. We see that
A = E[min{X1 yeeny Xn}] +An_q
1
= +An_1

because the minimum of Expo is Expo with the sum of the rates.

Hence, ] |
E[Z]:An:1+§+-~+5:H(n).
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Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a random
motion in {0,1}. Here, ais the probability that the state changes in

the next step.
St

Let’s simulate the Markov chain:
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Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current
state, with equal probabilities.

3

5

Finite Markov Chain: Definition

> Afinite set of states: 2" ={1,2,...,K}
» A probability distribution mp on 2" : mp(i) > 0,%; mo (i) =1
» Transition probabilities: P(i,j) for i,j € 2
P(i.j) =2 0,Yi.j; ¥; P(i.j) = 1,Vi
> {Xp,n> 0} is defined so that
Pr{Xo =il = mo(i),i € 2 (initial distribution)
PriXos1 =Jj| Xo,.... Xn=11=P(i.}),i,je Z.

Two-State Markov Chain

Symmetric two-state Markov chain for a random motion on {0,1}.
Recall ais the probability of a state change in a step.

0 /1-a a
P71(a 1—3)

Sum of row entries? 1. Always.

Evolving distribution.
If mp=[1,0] whatis my? mP =[1-a,al.
What is m? m P [(1—a)(1 —a)+ &, (1 —a)a+a(1 - a)]
What is m109? Just guessing, but close to [.5,.5]. Later.

Five-State Markov Chain

MC follows each outgoing arrows of current state with equal

probabilities.
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Evolving distribution from my = [1,0,0,0,0]?
What is 7 ? 7 P = [0,.5,0, .5,0].

Ifmf.2,.2,.2,.2,.2], whatis m;1? mP [.2,.3,.3,.1,.1].
This is just taking scaled (by .2) in-degree. Only works for uniform.
What is it at 77,'10000?

Distribution of X,

Recall 7, is a distribution over states for Xj,.

Stationary distribution: 7 = zP.
Distribution over states is the same before/after transition.
probability entering i: Y ; P(j, /)7 (f)-
probability leaving i: m;.
are Equal!
Distribution same after one step.
Questions? Does one exist? Is it unique?
If it exists and is unique. Then what?
Sometimes the distribution as n — o

Stationary: Example

Example 1:

NGB SN U

Balance Equations.

wp=r o w.a@] 57 7, | <im0
< n(1)(1—a)+x(2)b=r(1) and n(1)a+n(2)(1 —b) = n(2)
< m(1)a=n(2)b.

These equations are redundant! We have to add an equation:
n(1)+n(2) = 1. Then we find

b a

n:[a+b‘a+b

].




Stationary: Example 2

A B C D E
A/0 5 0 5 0
B[o 0o 1 0 o
-\ P=c|1 0 0 0 o0
“m" pl1/3 1/3 0o o 1/3
E\0 5 5 0 0

Balance equations: 7P = 7.

n(C)+1/3n(D) = n(A)
5m(A)+1/3n(D)+ .57(C) = n(B)
1n(B)+.5n(E) = n(C)
51(A) =n(D)
1/3n(D) = n(E)
Plus (A)+ n(B) +n(C)+ n(D) + n(E) = 1.
Solution: 3‘79[12.9, 10,6,2]. After a long time on ChatGPT.
Verify: adds to 1. m(A) = n(C)+1/3m(D) <39 10+1/3x6=12. ...

Stationary distributions: Example 3

(o & B

10

nP=n<[r(1),7(2)] [ 0 1

] =[r(1),7(2)] & (1) = 2(1) and 7(2) = 7(2).

Every distribution is invariant for this Markov chain. Since X, = X for

all n. Hence, Pr[X, = il = Pr[Xy = i],¥(i,n).

Discussion.
We have seen a chain with one stationary,
and a chain with many.

When is there just one? When is a stationary distribution unique?

[rreducibility.

Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).

Examples:

0.3 0.3 0.3

0.2

0.8
[A] B] (€]

[A] is not irreducible. It cannot go from (2) to (1).
[B] is not irreducible. It cannot go from (2) to (1).
[C]is irreducible. It can go from every i to every j.

If you consider the graph with arrows when P(i,j) > 0, irreducible
means that there is a single (strongly) connected component.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one
invariant distribution.

That is, there is a unique positive vector 7 = [z(1),...,7(K)] such that
P =mand Lxm(k)=1.

Ok. Now.
Only one stationary distribution if irreducible (or connected.)

Long Term Fraction of Time in States

Theorem Let X, be an irreducible Markov chain with invariant
distribution 7.

Then, for all j,

n—1
1 Y 1{Xn=1i} = a(i), as n— co.
nm:O

The left-hand side is the fraction of time that X, = i during steps
0,1,...,n—1. Thus, this fraction of time approaches n(/).

Proof: Lecture note 21 gives a plausibility argument.

Long Term Fraction of Time in States

Theorem Let X, be an irreducible Markov chain with invariant
distribution 7. Then, for all i, %221;10 X =i} — w(i), as n— oo

Example 1:

(1)] = = =[/21/2

The fraction of time in state 1 converges to 1/2, which is 7(1).




Long Term Fraction of Time in States

Theorem Let X, be an irreducible Markov chain with invariant
1

distribution 7. Then, for all i, 527{:10 W Xm=1i}— (i), as n— co.

Example 2:

T
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does 7, approach the

unique invariant distribution 7?
Answer: Not necessarily. Here is an example:

. :[? é] = = =[/21/9

n

Assume Xp=1. Then X; =2, X, =1,X3=2,....
Thus, if 7y = [1,0], 7y =[0,1], 2 = [1,0], 73 = [0, 1], etc.

Hence, m, does not converge to 7 =[1/2,1/2].
Notice, all cycles or closed walks have even length.

Convergence to stationary distribution.

Theorem Let X, be an irreducible Markov chain with invariant
distribution 7. Then, for all i, Y74 1{Xy =i} — (i), as n— co.

. JIm

Example 2:

;

02
= [0.4,0.6]

Hom=1

m=0

S0 w0 w0 @0 B0 w0 om0 w0

As n gets large the probability of being in state 1 approaches 0.4.
(The stationary distribution.) Notice cycles of length 1 and 2.

Periodicity
Definition: Periodicity is gcd of the lengths of all closed walks in
irreducible chain.  Previous example: 2.
Definition If periodicity is 1, Markov chain is said to be aperiodic.
Otherwise, it is periodic.

Example
& e

o
b b

[]

Which one converges to[ s%ationary?
(A)[A]

(B)[BI

(C) both
(D) neither.
(A).

[A]: Closed walks of length 3 and length 4 = periodicity = 1.
[B]: All closed walks multiple of 3 = periodicity = 3 .

Convergence of 7,
Theorem Let X, be an irreducible and aperiodic Markov chain with
invariant distribution z. Then, foralli € 27,

Ttn(i) — (i), as n— oo.

Example

Convergence of

Theorem Let X, be an irreducible and aperiodic Markov chain with
invariant distribution z. Then, for all i € .27,

7tn(i) — m(i), as n— oo.

Non Example: periodic chain
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First Passage Time - Example 1. Poll

Let's flip a coin with Pr[H] = p until we get H. How many flips, on

average?
g=1—-p P
(7 ®
Xo

Let B(S) be the average time until E, starting from S.
What is correct?

A) B(S) is at least 1.

B) From S, in one step, go to S with prob. g=1-p
C) From S, in one step, go to E with prob. p.

D) If you go back to S, you are back at S.
D)

(
(
E
(D) B(S) =1+9B(S) +poO.

All are correct. (D) is the “Markov property.” Only know where you are.

Hitting Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on
average (in expectation)?

Let's define a Markov chain:
> Xp =S (start)
» X,=Sforn>1,iflastflipwas T and no H yet
» X, = E for n> 1, if we already got H (end)

g=1-p P

Hitting Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on
average (in expectation)?

g=1-—p p
T
SoglNG
Xo

Let B(S) be the expected time until E, starting from S.
Then,

B(S)=1+aB(S)+pO.
(See next slide.) Hence,

B(S)=1+(1-p)B(S) = pB(S) =1, so that B(S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!

First Passage Time - Example 1
Let’s flip a coin with Pr[H] = p until we get H. How many flips in
expectation?

g=1-p p
(7 ®
Xo
Let B(S) be the expected time until E.
Then,
B(S)=1+4qpB(S)+po0.
Justification: N — number of steps until E, starting from S.

N’ — number of steps until E, after the second visit to S.
And Z = 1{first flip = H}. Then,

N=1+(1-2)x N +Zx0.
Z and N’ are “independent.” E[N'] = E[N] = B(S).
Hence, taking expectation,
B(S) = EIN]=1+(1~p)E[N'] +p0 =1+ gB(S) + p0.

Hitting Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average?

HTHTTTHTHTHTTHTHH

Let’s define a Markov chain:
> Xp =S (start)
» X, = E, if we already got two consecutive Hs (end)
» X, =T, if last flip was T and we are not done

» X, = H, if last flip was H and we are not done

Hitting Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average? Here is a picture:

g:=1-p

P 9 p S: Start
9 p( B G . H: Last flip = H
S a T: Last flip =T
Xo

£: Done

1

Which one is correct?

(A) B(S)=1+pB(H)+gB(T)

(B) B(S) =pB(H)+9qB(T)

(C) B(S)=B(S)+aB(T)+pB(H).

(A) Expected time from Sto E.

B(S) = Pr{HIE[B(S)|H] + Pr[TIE[B(S)IT]
B(S)=p(1+B(H))+q(1+B(T)
B(S)=1+pB(H)+qB(T)




Hitting Time - Example 2

Let'’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average? Here is a picture:

qg=1=p
» @ » S: Start
9 ])( )q g . H: Last flip=H
i . T: Last fip=T
Xo @ E: Done
q

Let (i) be the average time from state i until the MC hits state E.
We claim that (these are called the first step equations)

B(S)=1+pB(H)+aB(T)
B(H) =1+p0+gB(T)
B(T) =1+pB(H)+qB(T).

Solving, we find B(S) =2+3gp~" +¢?p~2. (E.g., B(S) =6if p=1/2.)

Hitting Time - Example 2

g:=1-p
P @ » S: Start
H: Last flip=H
Gt 30 XY .
g q T: Last flip=T
Xo E: Done
q

Let us justify the first step equation for B(T). The others are similar.

N(T) — number of steps, starting from T until the MC hits E.

N(H) — be defined similarly.

N'(T) — number of steps after the second visit to T until MC hits E.
N(T)=1+ZxN(H)+(1-2Z)x N'(T)

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N'(T) are independent, taking expectations, we get

E[N(T)] =1+ pE[N(H)] + gE[N'(T)],
B(T)=1+pB(H)+aB(T).

ie.,

Hitting Time - Example 3
You roll a balanced six-sided die until the sum of the last two rolls is 8.
How many times do you have to roll the die, on average?

S = Start; E = Done

i = Last roll is i, not done

P(S,j)=1/6.7=1..... 6
§®_ L pjy=1/6.j=1.....6

P(i,j) = 1/6,i=2,...,68— i #j € {1,...,6}
P(i,E)=1/6,i=2,....6

The arrows out of 3,...,6 (not shown) are similar to those out of 2.

6 6
BO)=1+g LBBO=1+5 L BOBO=T+g T Bl)i=2..8
= =

=1, B8~
Symmetry: (2) =--- = B(6) =: . Also, (1) = B(S). Thus,
B(S)=1+(5/6)y+B(S)/6; v=1+(4/6)r+(1/6)B(S).
=..-B(S)=84.

Here before There - A before B
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

0 1 n—1 n n+l1l 100
P P p p P r
7 q g 9 q q g=1-p

Let a(n) be the probability of reaching 100 before 0, starting from n,
forn=0,1,...,100.

Which equations are correct?

(A) a(0)=0

B) a(0)=1.

C) «(100) =1.

D) a(n) =1+pa(n+1)+qga(n—1),0 <n<100.

E) a(n) = pa(n+1)+qa(n—1),0 < n<100.

B) is incorrect, 0 is bad.

D) is incorrect. Confuses expected hitting time with A before B.

(
(
(
(
(
(

Here before There - A before B
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

0 1 n-1 n n+1l 100
i i i v i i
74 9 4 9 g g=1-p

Let at(n) be the probability of reaching 100 before 0, starting from n,
for n=0,1,...,100.

(0) =0;a(100) = 1.
a(n)=pa(n+1)+qa(n—1),0 < n<100.

n
= a(n) = 117% with p = o . (See LN 22)

Here before There - A before B
Game of “heads or tails” using coin with ‘heads’ probability p = .48.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

-1

—

log,, Pr(100 before 0] X, = 10; p] 7

p = Prlwin in each game]

7
046 0465 047 0ATS Q4B 0485 049 0485 05

Less than 1 in a 1000. Moral of example: Money in Vegas stays in Vegas.




First Step Equations

A o i x
! B

Let X, be aMC on 2" and A,B c 2~ with An B = 0. Define

Accumulating Rewards

Let X, be a Markov chain on 2" with P. Let AC 2°
Let also g: 2" — % be some function.

Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

Ta=min{n>0]| X, € A} and Tg =min{n>0| X, € B}. Define
Ta
V(i):E[Z g(X,,)\XO:i],ie Z. FSE:
For B(i) = E[T4 | Xo = i], first step equations are: =0
. . Then
ﬁ({)=0«leA S (i) = a(i), ificA
B(i) =1+ P(i.))BU).i ¢ A =3 gl)+5,PULJ)YG),  otherwise.
i
For o(i) = Pr[Ta< Tg | Xo =i],i € 2., first step equations are:

a(i)=1,icA

a(i)=0,icB Solving, we find y(S) = 2.5.

a(i) =Y P(i.j)a()),i ¢ AUB.

)
Recap Summary
Markov Chains
» Markov Chain:
> Finite set 27 mo; P={P(i,j).i.j€ Z'}; > Markov Chain: Pr{Xny1 = j1Xo,.... Xo = 1] = P(i.
> PriXo =il =m(i)ic 2 . [ i ”. 0o ]” (j’)
> PrXps1=j| Xo,...,Xn = i] = P(i.j),i,j € 2 ,n>0. > FSE: B(i)=1+X; P(i,/)B(); ai) = X; P(i. ) a()).
> Note: > = mP"
Pr[Xo =io, X1 = it,..., Xn=in) = m(io) P(iv,i1) - - P(in-1,in)- . o
. . » rmisinvariantiff tP=nm
» First Passage Time: rreducibl donl ) ant distributi
>
> ANB = 0.B(i) = E[TalXo = 1l ali) = P[Ta < TolXo = 1 rreducible = one and only one invariant distribution 7
> B(i)y=1+X,;P(i.j)B(j); > Irreducible = fraction of time in state / approaches (/)
> a(i) =Y, P(i.)a(). a(A)=1,a(B)=0. » Irreducible + Aperiodic = 7, — 7.
» Calculating 7: One finds = =[0,0...., 1]Q " where Q= -




