
Summary: so far.

Markov Chains

▶ Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)

▶ πn = π0Pn

▶ π is invariant iff πP = π

▶ Irreducible ⇒ one and only one invariant distribution π

▶ Irreducible ⇒ fraction of time in state i approaches π(i)

▶ Irreducible + Aperiodic ⇒ πn → π.

▶ Calculation: π = [0,0. . . . ,1]Q−1 where Q is P − I plus all 1’s..
πP = π =⇒ π(P − I) = 0.
And ∑i π(i) = 1 is all ones.
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Convergence of πn

Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π.

Then, for all i ∈ X ,

πn(i)→ π(i), as n → ∞.

Non Example: periodic chain
m

1 2

1

1

⇡ = [0.5, 0.5]

⇡(2)

⇡(1)

m

⇡m(2)

⇡m(1)

Note: d > 1, can d-color Markov Chain
vertices in color i (mod d) point to i +1 (mod d).

=⇒ decompose invariant distribution into d distributions on d colors.
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First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.
(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.
(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.
(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.

(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.
(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(E) β (S) = 1+q×β (S)+p×0.
(F) Wait: this is G(p).

All are correct. (D) is the “Markov property.” Only know where you are.



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let’s define a Markov chain:

▶ X0 = S (start)

▶ Xn = S for n ≥ 1, if last flip was T and no H yet

▶ Xn = E for n ≥ 1, if we already got H (end)
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Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.)

Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1,

so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).

The mean of G(p) is 1/p!!!



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average (in expectation)?

Let β (S) be the expected time until E , starting from S.

Then,
β (S) = 1+q×β (S)+p×0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.

Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification:

N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.

N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.

And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}.

Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.”

E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).

Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0

= 1+q×β (S)+p×0.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips in
expectation?

Let β (S) be the expected time until E .
Then,

β (S) = 1+q×β (S)+p×0.
Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)×E [N ′]+p×0 = 1+q×β (S)+p×0.



Hitting Time - Example 2

Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

H T H T T T H T H T H T T H T H H
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▶ Xn = T , if last flip was T and we are not done

▶ Xn = H, if last flip was H and we are not done
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Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

Here is a picture:

Which one is correct?
(A) β (S) = 1+p×β (H)+q×β (T )
(B) β (S) = p×β (H)+q×β (T )
(C) β (S) = β (S)+q×β (T )+p×β (H).

(A) Expected time from S to E .
β (S) = Pr [H]E [β (S)|H]+Pr [T ]E [β (S)|T ]
β (S) = p(1+β (H))+q(1+β (T )
β (S) = 1+pβ (H)+qβ (T )
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Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

Here is a picture:

Let β (i) be the average time from state i until the MC hits state E .

We claim that (these are called the first step equations)

β (S) = 1+p×β (H)+q×β (T )

β (H) = 1+p×0+q×β (T )

β (T ) = 1+p×β (H)+q×β (T ).

Solving, we find β (S) = 2+3qp−1+q2p−2. (E.g., β (S) = 6 if p = 1/2.)
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Hitting Time - Example 2

Let us justify the first step equation for β (T ). The others are similar.

N(T ) – number of steps, starting from T until the MC hits E .
N(H) – be defined similarly.
N ′(T ) – number of steps after the second visit to T until MC hits E .

N(T ) = 1+Z ×N(H)+(1−Z )×N ′(T )

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N ′(T ) are independent, taking expectations, we get

E [N(T )] = 1+pE [N(H)]+qE [N ′(T )],

i.e.,
β (T ) = 1+pβ (H)+qβ (T ).
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Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.
How many times do you have to roll the die, on average?

β (S)=1+
1
6

6

∑
j=1

β (j);β (1)=1+
1
6

6

∑
j=1

β (j);β (i)=1+
1
6 ∑

j=1,...,6;j ̸=8−i
β (j), i =2, . . . ,6.

Symmetry: β (2) = · · ·= β (6) =: γ. Also, β (1) = β (S). Thus,

β (S) = 1+(5/6)γ +β (S)/6; γ = 1+(4/6)γ +(1/6)β (S).

⇒ ···β (S) = 8.4.
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Here before There - A before B
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.

Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

Let α(n) = Pr [reach 100 before 0|at n] for n = 0,1, . . . ,100.

Which equations are correct?
(A) α(0) = 0
(B) α(0) = 1.
(C) α(100) = 1.
(D) α(n) = 1+pα(n+1)+qα(n−1),0 < n < 100.
(E) α(n) = pα(n+1)+qα(n−1),0 < n < 100.

(B) is incorrect, 0 is bad.
(D) is incorrect. Confuses expected hitting time with A before B.
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Game of “heads or tails” using coin with ‘heads’ probability p = .48.
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What is the probability that you reach $100 before $0?

Less than 1 in a 1000. Moral of example: Money in Vegas stays in Vegas.
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First Step Equations

Let Xn be a MC on X and A,B ⊂ X with A∩B = /0. Define

TA =min{n ≥ 0 | Xn ∈ A} and TB =min{n ≥ 0 | Xn ∈ B}.

For β (i) = E [TA | X0 = i], first step equations are:

β (i) = 0, i ∈ A
β (i) = 1+∑

j
P(i , j)β (j), i /∈ A

For α(i) = Pr [TA < TB | X0 = i], i ∈ X ,, first step equations are:

α(i) = 1, i ∈ A
α(i) = 0, i ∈ B
α(i) = ∑

j
P(i , j)α(j), i /∈ A∪B.
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Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P.

Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A

g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some reward function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.



Example

Flip a fair coin until you get two consecutive Hs.

What is the expected number of Ts that you see?

H HH

T

S
0.5 0.5

0.5
0.5

g(S) = g(H) = g(HH) = 0

g(T ) = 1

FSE:

γ(S) = 0+0.5γ(H)+0.5γ(T )

γ(H) = 0+0.5γ(HH)+0.5γ(T )

γ(T ) = 1+0.5γ(H)+0.5γ(T )

γ(HH) = 0.

Solving, we find γ(S) = 2.5.
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Recap

▶ Markov Chain:

▶ Finite set X ; π0; P = {P(i , j), i , j ∈ X };
▶ Pr [X0 = i] = π0(i), i ∈ X
▶ Pr [Xn+1 = j | X0, . . . ,Xn = i] = Pr [Xn+1 = j | Xn−1 = j] =

P(i , j), i , j ∈ X ,n ≥ 0.
▶ Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

▶ First Passage Time:

▶ A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
▶ β (i) = 1+∑j P(i , j)β (j);
▶ α(i) = ∑j P(i , j)α(j). α(A) = 1,α(B) = 0.
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Summary

Markov Chains

▶ Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)

▶ πn = π0Pn

▶ π is invariant iff πP = π

▶ Irreducible ⇒ one and only one invariant distribution π

▶ Irreducible ⇒ fraction of time in state i approaches π(i)

▶ Irreducible + Aperiodic ⇒ πn → π.

▶ Calculation: π = [0,0. . . . ,1]Q−1 where Q is P − I plus all 1’s..

▶ FSE for Hitting Time: β (i) = 1+∑j P(i , j)β (j)

▶ FSE for A befure B: α(i) = ∑j P(i , j)α(j).
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CS70: Lecture 27

1. Continuous Probability

2. Normal Distribution

3. Central Limit Theorem

4. Confidence Intervals

5. Wrapup.



Continuous Probability

1. pdf: Pr [X ∈ (x ,x +δ ]]≈ fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞

fX (y)dy .

3. U[a,b], Expo(λ ), target.

4. Expectation: E [X ] =
∫

∞

−∞
xfX (x)dx .

5. Variance: var [X ] = E [(X −E [X ])2] = E [X 2]−E [X ]2.

6. Variance of Sum of Independent RVs: If Xn are pairwise
independent, var [X1 + · · ·+Xn] = var [X1]+ · · ·+var [Xn]

7. Joint Density function:
Pr [X ∈ [x ,x +δ ],Y ∈ [y ,y +δ ]]≈ fX ,Y (x ,y)δ 2.

8. Conditional Density:
Pr [X ∈ [x ,x +δ ]|Y = y ]≈ fX |Y (x ,y)dx =

fX ,Y (x ,y)
fY (y) dx .
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Summary

1. Bayes’ Rule: Replace {X = x} by {X ∈ (x ,x + ε)}.

2. Gaussian: N (µ,σ2) : fX (x) = 1
σ
√

2π
e

1
2 (

(x−µ)2
σ

) “bell curve”

3. CLT: Xn i.i.d. =⇒ An−µ

σ/
√

n → N (0,1)

4. CI: [An −2 σ√
n ,An +2 σ√

n ] = 95%-CI for µ.
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Confusing Statistics: Simpson’s Paradox

Applications/admissions by two [sic] genders two colleges of a
university.

Male admission rate 80% but female 51%!

But admission rate is larger for female students in both colleges....

More female applicants to college that admits fewer students.

Side note: average high school GPA is higher for female students.

Other example: On-time arrival for airlines.
If “hub” in chicago, that’s a problem overall.

GPA: stronger students take harder classes. Maybe.
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More on Confusing Statistics

Statistics are often confusing:

▶ The average household annual income in the US is $72k .
Yet, the median is $52k .

▶ The false alarm rate for prostate cancer is only 1%.
Still only 1 person in 8,000 has that cancer. Prior.
=⇒ there are 80 false alarms for each actual case.

▶ The Texas sharpshooter fallacy:
Shoot a barn. Paint target cluster. I am sharpshooter!

People living close to power lines.
You find clusters of cancers!
Also find such clusters when looking at people eating kale!

▶ False causation. Vaccines cause autism.
Both vaccination and autism rates increased....

▶ Beware of statistics reported in the media!
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Confirmation Bias

Confirmation bias: tendency to search for, interpret, and recall
information in a way that confirms one’s beliefs or hypotheses, while
giving less consideration to alternative possibilities.

Confirmation biases contribute to overconfidence in personal beliefs
and can maintain or strengthen beliefs in the face of contrary
evidence.

Three aspects:

▶ Biased search for information.
E.g., facebook friends effect, ignoring inconvenient articles.

▶ Biased interpretation.
E.g., valuing confirming versus contrary evidence.

▶ Biased memory.
E.g., remember facts that confirm beliefs and forget others.
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Confirmation Bias: An experiment

There are two bags.

One with 60% red balls and 40% blue balls;
the other with the opposite fractions.

One selects one of the two bags.

As one draws balls one at time, one asks people to declare whether
they think one draws from the first or second bag.

Surprisingly, people tend to be reinforced in their original belief, even
when the evidence accumulates against it.
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Report Data not Opinion!

A bag with 60% red, 40% blue or vice versa.

Each person pulls ball, reports opinion on which bag:
Says “majority blue” or “majority red.”

Does not say what color their ball is.

What happens if first two get blue balls?

Third hears two say blue, so says blue, whatever she sees.
Plus Induction.

Everyone says blue...forever ...and ever.

Problem: Each person reported honest opinion rather than data!
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Being Rational: ‘Thinking, Fast and Slow’

In this book, Daniel Kahneman discusses examples of our irrationality.

Here are a few examples:

▶ Experiment: A judge rolls a die in the morning.
In the afternoon, he assigns a sentence to a criminal (based on
folder).
Statistically, morning roll high =⇒ sentence is high.

▶ People tend to be more convinced by articles printed in Times
Roman instead of Computer Modern Sans Serif.

▶ Perception: Which horizontal line is longer?

It is difficult to think clearly!
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Really?

Judges at Lousiana give longer sentences when LSU gives upset
losses.

Judges give larger sentences when hungry.

Let’s check google and google scholar.

Uh oh.

Certainty is the enemy?
Unless you work hard! You have the internet.
You have your intellect.

...and (most important) your integrity.
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What to Remember?

Professor,

what should I remember about probability from this
course?

I mean, after the final.

Here is what the prof. remembers:

▶ Given the uncertainty around us, understand some probability.

▶ One key idea - what we learn from observations: the role of the
prior; Bayes’ rule; Estimation; confidence intervals... quantifying
our degree of certainty.

▶ This clear thinking invites us to question vague statements, and
to convert them into precise ideas.
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Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs,

Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs,

Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p),

RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA,

Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon,

Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,

Probability, ... ,
how to handle stress, how to sleep less, how to keep smiling, ...

Difficult course? Perhaps. Mind expanding! I believe!!
Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress,

how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less,

how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...

Difficult course? Perhaps. Mind expanding! I believe!!
Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course?

Perhaps. Mind expanding! I believe!!
Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps.

Mind expanding! I believe!!
Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding!

I believe!!
Useful? You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful?

You bet!



Parting Thoughts

You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,

how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! I believe!!

Useful? You bet!



Arguments, reasoning.

What you know: slope, limit.

Plus: definition.
yields calculus.

Minimization, optimization, . . ...

Knowing how to program plus some syntax (google) gives the ability
to program.

Knowing how to reason plus some definition gives calculus.

Discrete Math: basics are counting, how many, when are two sets the
same size?

Probability: division.

...plus reasoning.
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What’s Next?

Professor,

I loved this course so much!
I want to learn more about discrete math and probability!

Funny you should ask! How about
▶ CS170: Efficient Algorithms and Intractable Problems a.k.a.

Introduction to CS Theory: Graphs, Dynamic Programming, Complexity.
▶ EE126: Probability in EECS: An Application-Driven Course: PageRank,

Digital Links, Tracking, Speech Recognition, Planning, etc.
Hands on labs with python experiments (GPS, Shazam, ...).

▶ CS188: Artificial Intelligence: Hidden Markov Chains, Bayes Networks,
Neural Networks.

▶ CS189: Introduction to Machine Learning: Regression, Neural
Networks, Learning, etc. Programming experiments with real-world
applications.

▶ EE121: Digital Communication: Coding for communication and storage.
▶ EE223: Stochastic Control.
▶ EE229A: Information Theory; EE229B: Coding Theory.
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Final Thoughts

More precisely: Some thoughts about the final ....

How to study for the final?

▶ Lecture Slides; Notes; Discussion Problems; HW

▶ Approximate Coverage: Probability 2/3, Discrete Math: 1/3.

▶ Every question topic covered in at least two places. Most will be
covered in all places.
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Thanks to the CS70 Staff:

▶ The Terrific Tutors
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▶ The Thrilling TAs

▶ The Amazing Assistants

Good studying!!!
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