Do you remember the first lecture?

https://www.youtube.com/watch?v=eVtCO84MDj8

Do you remember the first lecture?

Veritassium on Khan

https://www.youtube.com/watch?v=eVtCO84MDj8

Do you remember the first lecture?

Veritassium on Khan

a Actual Recall b Predicted Recall

Proportion of Ideas Recalled
Judgment of Learning

36
8888 SSSR SRRR 5888 8SSR SRRR

Fig. I. Final recall (a) after repeatedly studying a text in four study periods (5SS condition), reading a text
in three study periods and then recalling it in one retrieval period (SSSR condition), or reading a text in
one study period and then repeatedly recalling it in three retrieval pericds (SRRR condition). Judgments of
learning (b) were made on a 7-point scale, where 7 indicated that students believed they would remember
material very well. The data presented in these graphs are adapted from Experiment 2 of Roediger and
Karpicke (2006b). The pattern of students’ of learning (predicted recall) was
exactly the opposite of the pattern of students’ actual long-term retention.

https://www.youtube.com/watch?v=eVtCO84MDj8

CS70: Lecture 9. Outline.

1. Public Key Cryptography
2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat's Theorem.
2.3 Construction.

3. Warnings.

Simple Chinese Remainder Theorem.

Simple Chinese Remainder Theorem.

My love is won.

Simple Chinese Remainder Theorem.

My love is won. Zero and One.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x =a (mod m) and x = b (mod n)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.
CRT Thm: There is a unique solution x (mod mn).

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).

u=0 (mod n)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).

u=0 (mod n) u=1 (mod m)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n)).

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n)).
v=1 (mod n)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v =m(m™! d n))
v=1 (mod n) v=0

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x=a (mod m)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x =a (mod m) since bv =0 (mod m) and au=a (mod m)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x =a (mod m) since bv =0 (mod m) and au=a (mod m)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x =a (mod m) since bv =0 (mod m) and au=a (mod m)
x=b (mod n)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x =a (mod m) since bv =0 (mod m) and au=a (mod m)
x=b (mod n) since au=0 (mod n) and bv = b (mod n)

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n) u=1 (mod m)
Consider v=m(m~' (mod n))
v=1 (mod n) v=0
Let x = au+ bv.
x =a (mod m) since bv =0 (mod m) and au=a (mod m)
x=b (mod n) since au=0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).
Proof (uniqueness):

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.
(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n
= mn|(x—y)

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n
= mn|(x—y)
= X—y>mn

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n
= mn|(x—y)
= x—y>mn = x,y<¢{1,...,mn—1}.
(e.g,m=2,n=5x,ye{1,...,9} = x—y<10)

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n
= mn|(x—y)
= x—y>mn = x,y<¢{1,...,mn—1}.
(e.g,m=2,n=5x,ye{1,...,9} = x—y<10)

Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y.

(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of mand n
gcd(m,n) =1 = no common primes in factorization m and n
= mn|(x—y)
= x—y>mn = x,y<¢{1,...,mn—1}.
(e.g,m=2,n=5x,ye{1,...,9} = x—y<10)

Thus, only one solution modulo mn.

Isomorphisms.

Bijection:

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.
Simplified Chinese Remainder Theorem:

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider:

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43422 =65

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)?

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes!

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)?

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes!

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes!

Isomorphism:

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

Isomorphisms.
Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
If ged(n,m) =1, there is unique x (mod mn) where
x=a (mod m)and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What'’s true?
(A x+y=2 mod7

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

(A x+y=2 mod7
(B x+y=2 mod6

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

(A x+y=2 mod7
(B x+y=2 mod6
(C)xy=3 mod6

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

(A x+y=2 mod7
(B x+y=2 mod6
(C)xy=3 mod6
(D) xy =6 mod7

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

)X+y=2 mod7
)X+y=2 mod6
) Xy =3 mod6

)Xy =6 mod7
)

(A
(B
(C
(D
(E) x=5 mod 42

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

)X+y=2 mod6
) Xy =3 mod6
)Xy =6 mod7
) X =5 mod 42
) ¥y =39 mod 42

Poll

X=5 mod7and x=5 mod6
y=4 mod7and y=3 mod6

What’s true?

)X+y=2 mod6
) Xy =3 mod6
)Xy =6 mod7
) X =5 mod 42
) ¥y =39 mod 42

All true.

Xor

Computer Science:

Xor

Computer Science:
1 - True
0 - False

Xor

Computer Science:
1 - True
0 - False

1Tv1=1

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0=1
ovi=1
ovo=0

A® B - Exclusive or.

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1961=0

Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0o=1
ovi=1
ovo=0
A® B - Exclusive or.
1$1=0
190=1
0Oe1=1

040=0

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1961=0
160=1
0p1=1
0p0=0

Note: Also modular addition modulo 2!

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1®1=0
1e0=1
0Oe1=1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1®1=0
1e0=1
0Oe1=1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1®1=0
1e0=1
0Oe1=1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@B® B = A.

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1®1=0
1e0=1
0Oe1=1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@B® B = A.
By cases: 1@o1@1=1.

Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1®1=0
1e0=1
0Oe1=1
020=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@B® B = A.
Bycases: 1®1p1=1. ...

Cryptography ...

@ Bob
Eve

Cryptography ...

Secret s

i B
Alice Eve ob

Cryptography ...

Secret s

Message m

Ali B
ice Eve ob

Cryptography ...

Secret s

Message m

Cryptography ...

Secret s

Message m

Cryptography ...

m= D(E(m,s),s) Secret s

@ £i Bob

Eve

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@s®s=m!

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise ma s.
D(x,s) — bitwise x & s.
Works because m@&s®ds=m!

...and totally secure!

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..

Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.

Public key crypography.

@ Bob

Eve

Public key crypography.

Public: K

@ Bob

Eve

Public key crypography.

Private: k Public: K

@ Bob

Eve

Public key crypography.

Private: k Public: K Message m

@ Bob

Eve

Public key crypography.

Private: k Public: K Message m

E(m,K)

Eve

Public key crypography.

Private: k Public: K Message m

(m,K)
@ Bob

Eve

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me and you

Eve

Message m

Bob

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

"Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.
Encode every message: E(m',K). Check if Bob’s: E(m, K).

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.
Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.
Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?
...out we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman):

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...but we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Let N =pg.

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Let N =pg.
Choose e relatively prime to (p—1)(g—1)."
Compute d=e~" mod (p—1)(g—1).

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m®® = m mod N?

Typically small, say e = 3.

Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But wethink so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m®® = m mod N? Will prove “Yes!”

Typically small, say e = 3.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.
(A) Eve knows e and N.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(Cyed=1 (mod N—1)

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.

(B) Alice knows e and N.

(Cyed=1 (mod N—1)

(D) Bob forgot p and g but can still decode?

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.

(B) Alice knows e and N.

(Cyed=1 (mod N—1)

(D) Bob forgot p and g but can still decode?
(E) Bob knows d

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

A) Eve knows e and N.

) Alice knows e and N.

yed=1 (mod N—1)

) Bob forgot p and q but can still decode?
)

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

) Eve knows e and N.

) Alice knows e and N.

yed=1 (mod N—1)

) Bob forgot p and q but can still decode?
) Bob knows d

yed=1 (mod (p—1)(q—1)) if N=pq.

A), (B), (D), (E), (F)

B
C
D

(A
(
(
(
(E
(F
(

lterative Extended GCD.
Example: p=7,g=11.

lterative Extended GCD.

Example: p=7,g=11.
N=77.

lterative Extended GCD.

Example: p=7,g=11.
N=77.
(p—1)(g—1)=60

lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.

lterative Extended GCD.

Example: p=7,g=11.

N=T77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

lterative Extended GCD.

Example: p=7,g=11.

N=T77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60

lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(
7(1)+60(0)

7(-8)+60(1) =

0)+60(1) =

60

lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

- w A~

lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

- w A~

lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm:

- w A~

lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: —119+120 =1

- w A~

lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: —119+120 =1

- w A~

Encryption/Decryption Techniques.

Encryption/Decryption Techniques.

Public Key: (77,7)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2¢

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2¢=27

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2¢=2"=128

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2°=2" =128 =51 (mod 77)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2) =2° =27 =128 =51 (mod 77)
D(51) = 5143 (mod 77)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=2"=128 =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Encryption/Decryption Techniques.

Public Key: (77,7)

Message Choices: {0,...,76}.
Message: 2!

E(2)=2°=2"=128 =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplications.

Encryption/Decryption Techniques.

Public Key: (77,7)

Message Choices: {0,...,76}.
Message: 2!

E(2)=2°=2"=128 =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplications. Ouch.

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=2"=128 =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.
In general, O(N) or O(2™) multiplications!

Repeated squaring.

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 _ 5132+8+2+1

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 — 5132.518.512.517 (mod 77).

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 =

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

51‘21 =(51)%(51) =2601 =60 (mod 77)

51 =

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

51;‘ (512) % (512) = 60 %60 = 3600 = 58 (mod 77)
518 =

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 %60 = 3600 = 58 (mod 77)
518 = (51%)« (51%)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 %60 = 3600 = 58 (mod 77)
518 = (514) % (514) = 58 %+ 58 = 3364 = 53 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 %60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
5132.518.512.511 = (60) * (53) * (60) * (51) =2 (mod 77).

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
5132.518.512.51" = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.51" = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 8 multiplications

Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.51" = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated Squaring: x

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x?,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x*,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2,x*, ...,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ..., x2"*".

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ..., x2"*".

2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ..., x2"*".

2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.
Example:

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ..., x2"*".

2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X43

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X438 — x32+8+2+1

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ..., x2"*".

2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:

O(n) multiplications.

Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:

O(n) multiplications.

O(n?) time per multiplication.

Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N

Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.

Recursive.

xY.

Recursive.

xY.

yiseven, y =2k, x¥ = x? = (x®)k. k=y/2

Recursive.

xY.
yiseven, y =2k, x¥ = x? = (x®)k. k=y/2
power (x,y) = power (x2,y/2).

Recursive.

xY.

yiseven, y =2k, x¥ = x? = (x®)k. k=y/2
power (x,y) = power (x2,y/2).

yisodd, y =2k +1, x¥ = x2k = (x®)k. k = |y/2]

Recursive.

xY.

yiseven, y =2k, x¥ = x? = (x®)k. k=y/2
power (x,y) = power (x2,y/2).

yisodd, y =2k +1, x¥ = x2k = (x®)k. k = |y/2]
power (x,y) = x * power (x2,|y/2]).

Recursive.

xY.

yiseven, y =2k, x¥ = x? = (x®)k. k=y/2
power (x,y) = power (x2,y/2).

yisodd, y =2k +1, x¥ = x?k = (x®)k. k = |y /2]
power (x,y) = x * power (x2,|y/2]).

Base case: x0 =1.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m® (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m9 (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m9 (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = m® (mod N).
D(m,(N,d))=m® (mod N).

For 512 bits, a few hundred million operations.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m9 (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

Decoding.

E(m,(N,e)) =m® (mod N).

Decoding.

Decoding.

Decoding.

Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m (mod N).

N=pgandd=e"' (mod (p—1)(g—1)).

Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want:

Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(q—1)).
Want: (m®)? = m®¥ =m (mod N).

Always decode correctly?

E(m,(N,e)) =me® (mod N).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N.d)) =m? (mod N).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N.d)) =m? (mod N).

Always decode correctly?

E(m,(N,e))=m (mooI N).
D(m,(N,d)) =m® (mod N).
N=pq

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e""' (mod (p—1)(g—1)).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e""' (mod (p—1)(g—1)).
Want:

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e""' (mod (p—1)(g—1)).
Want: (m€)? = m® = m (mod N).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e""' (mod (p—1)(g—1)).
Want: (m€)? = m® = m (mod N).

Another view:

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— &P =1 (mod p)

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— a"P-1) =1 (mod p) =

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— aP-1) =1 (mod p) = gkP-1+1

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— gklp-1) =1 (mod p) = alP-1+1 = g (mod p)

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— gklp-1) =1 (mod p) = alP-1+1 = g (mod p)

versus a®

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— gklp-1) =1 (mod p) = alP-1+1 = g (mod p)

versus a%? = gP-1(@-1+1 = 3 (mod pq).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— gklp=1) =1 (mod p) = akP-+1 = g (mod p)
versus a® = g(P-1(@-)+1 — 3 (mod pq).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof:

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a:1)-(a-2)-++(a-(p—1) = 1:2:-(p—1) modp,

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

aP V(- (p=1))=(1---(p—1)) modp.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p,

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)-(a-(p~1))=1-2---(p~1) modp,
Since multiplication is commutative.

aP (1 (p=1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)-(a-(p~1))=1-2---(p~1) modp,
Since multiplication is commutative.

aP (1 (p=1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

aP =1 modp.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)-(a-(p~1))=1-2---(p~1) modp,
Since multiplication is commutative.

aP (1 (p=1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

aP =1 modp.

Poll

Mark what is true.

Poll

Mark what is true.

A)2"=1 mod7

B)26 =1 mod7

C) 21,22,23 24 25 26 27 are distinct mod 7.
D) 21,22 23 24 25 26 gre distinct mod 7
)25 =2 mod7

)25 =1 mod7

Poll

Mark what is true.

(A)2" =1 mod7

(B)26=1 mod7

(C) 21,22,28 24 25 26 27 are distinct mod 7.
(D) 21,22 28 24 25 26 are distinct mod 7
(E)2'® =2 mod 7

(F)2' =1 mod 7

(

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),

@ '=1 (mod p).

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).
Lemma 1: For any prime p and any a, b,

a'*ttP-1) = g (mod p)
Proof:

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p),

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Otherwise

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a'=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = g (mod p)

Proof:

If a=0 (mod p), “trivially”.

Otherwise

g1+b(p-1) =

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Otherwise

a1—¢—b(p71) = a1 " (ap71)b

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Otherwise

a1+b(P*1) = 31 *(ap71)b = a*(1)b =a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)
Lemma 2: For any two different primes p,q and any x, k,
x1+K(P=1@-1) = x (mod pq)
Proof: True for x = 0.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1TkP=1)(a-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+K(P=1@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.

x1tk(p=1)(a-1) = (mod q)

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1TkP=1)(a-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1TkP=1)(a-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
xHkP=-1(a-1) = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

X1+k(p_1)(q_1) =X (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1TkP=1)(a-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)

x+k@=1)pP-1) _ x is multiple of p and q

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(e=1(@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)
x+k@=1)pP-1) _ x is multiple of p and q
x"tK@D(P-1) _x =0 mod (pq)

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(e=1(@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)
x+k@=1)pP-1) _ x is multiple of p and q
x1+k(@-1)P-1) _x =0 mod (PQ) = x1Hk(@=1)P-1) = x mod Pq.

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(e=1(@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)
x+k@=1)pP-1) _ x is multiple of p and q
x1+k(@-1)P-1) _x =0 mod (PQ) = x1Hk(@=1)P-1) = x mod Pq.

Also from CRT:

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(e=1(@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)
x+k@=1)pP-1) _ x is multiple of p and q
x1+k(@-1)P-1) _x =0 mod (PQ) = x1Hk(@=1)P-1) = x mod Pq.

Also from CRT:
y=x (mod p)and y = x (mod q) = y =x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pg),

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pg),

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

Xed

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pg),

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

%9 = yk(p—1)(q—1)+1

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pg),

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

x®9 = xKP=D@=+1= x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)° =x* =x (mod pa).

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@=+1= x (mod pq).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime?

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test..

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with gcd(e,(p—1)(g—1)) =1.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.

Security of RSA.

Security of RSA.

Security?
1. Alice knows p and g.
2. Bob only knows, N(= pq), and e.

Security of RSA.

Security?
1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

Security of RSA.

Security?
1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

Security of RSA.

Security?
1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.

Security of RSA.

Security?
1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.

Hmmm..

How do you get Amazon’s key?

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Hmmm..

How do you get Amazon’s key?

Browser asks Amazon!

“Person in middle”, pretending to be Amazon?
Browser shipped with say just one key.

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Browser shipped with say just one key.
The “authority.”

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Browser shipped with say just one key.
The “authority.”

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Browser shipped with say just one key.
The “authority.”

When Amazon provides key, it provides signature from authority.

Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Browser shipped with say just one key.
The “authority.”

When Amazon provides key, it provides signature from authority.
Signature can be verified by browser, since it has key.

Signatures using RSA.

| Verisign: |

Amazon Browser.

Signatures using RSA.

| Verisign: |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)
Browser “knows” Verisign’s public key: Kj, .

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)
Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”

Signatures using RSA.

| Verisign: ky, K, |

[C.Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)
Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.

Signatures using RSA.

| Verisign: ky, K, |

[C.Sv(C)]
[C.S/(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)
Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.

Signatures using RSA.

| Verisign: ky, K, |

[C.Sv(C)]
[C.Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)
Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(Sv(C).Kv)

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(Sv(C),Kv) = (Sv(C))°

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(Su(C).Kv) = (Su(C))° = (C7)°

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(Su(C),Kv) = (Sv(0))° = (C7)° = C

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(S,(C).Ky) = (S,(C))® = (C%)¢ = C% = C (mod N)

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky, = (N, e) and ky =d (N =pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(S,(C),Ky)=(S,(C))¢=(CYe=C%=C (mod N)
Valid signature of Amazon certificate C!

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky, = (N, e) and ky =d (N =pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C,]

Checks E(y,Ky)=C?

E(S,(C),Ky)=(S,(C))¢=(CYe=C%=C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

RSA

Public Key Cryptography:

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N=m.

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N=m.
Signature scheme:

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N=m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C

Poll

Signature authority has public key (N.e).

Poll

Signature authority has public key (N.e).

(A) Given message/signature (x,y) : check y? = x (mod N)
(B) Given message/signature (x,y): check y® = x (mod N)
(C) Signature of message x is x¢ (mod N)
(D) Signature of message x is x4 (mod N)

Poll

Signature authority has public key (N.e).

) Given message/signature (x,y) : check y9 = x (mod N)
) Given message/signature (x,y): check y€ = x (mod N)
) Signature of message x is x¢ (mod N)

) Signature of message x is x? (mod N)

)

(A

(B
(C
(D
(B) and (D).

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve seesit.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...

Other Eve.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

Summary.

Public-Key Encryption.
RSA Scheme:

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y) =y (mod N).

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y) =y (mod N).
Repeated Squaring = efficiency.

Fermat's Theorem = correctness.

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y) =y (mod N).

Repeated Squaring = efficiency.
Fermat’'s Theorem — correctness.
Good for Encryption

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y) =y (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.

