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Fig. I. Final recall (a) after repeatedly studying a text in four study periods (5SS condition), reading a text
in three study periods and then recalling it in one retrieval period (SSSR condition), or reading a text in
one study period and then repeatedly recalling it in three retrieval pericds (SRRR condition). Judgments of
learning (b) were made on a 7-point scale, where 7 indicated that students believed they would remember
material very well. The data presented in these graphs are adapted from Experiment 2 of Roediger and
Karpicke (2006b). The pattern of students’ of learning (predicted recall) was
exactly the opposite of the pattern of students’ actual long-term retention.
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CS70: Lecture 9. Outline.

1. Public Key Cryptography
2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat's Theorem.
2.3 Construction.

3. Warnings.
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)X+y=2 mod6
) Xy =3 mod6
)Xy =6 mod7
) X =5 mod 42
) ¥y =39 mod 42

All true.
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Note: Also modular addition modulo 2!
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Property: A@B® B = A.
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Example:
One-time Pad: secret s is string of length |m|.
m=10101011110101101

E(m,s) — bitwise m® s.
D(x,s) — bitwise x & s.
Works because m@ s s=m!
...and totally secure!
...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.
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(m,K)
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Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?



Is public key crypto possible?

"Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.
Encode every message: E(m',K). Check if Bob’s: E(m, K).

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.
Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.
Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?
...out we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman):

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...but we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Let N =pg.

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.

Let N =pg.
Choose e relatively prime to (p—1)(g—1)."
Compute d=e~" mod (p—1)(g—1).

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).

Typically small, say e = 3.



Is public key crypto possible?

No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m®® = m mod N?

Typically small, say e = 3.
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No. In a sense.

Encode every message: E(nm', K). Check if Bob’s: E(m, K).
Too slow. Does it have to be slow?
We don’t know for sure. But we ....think so?

...out we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman):
Pick two large primes p and q.
Let N =pg.
Choose e relatively prime to (p—1)(g—1)."

Compute d=e~" mod (p—1)(g—1).
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m®® = m mod N? Will prove “Yes!”

Typically small, say e = 3.
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Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

) Eve knows e and N.

) Alice knows e and N.

yed=1 (mod N—1)

) Bob forgot p and q but can still decode?
) Bob knows d

yed=1 (mod (p—1)(q—1)) if N=pq.

A), (B), (D), (E), (F)

B
C
D

(A
(
(
(
(E
(F
(
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Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=2"=128 =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.
In general, O(N) or O(2™) multiplications!
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Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)
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Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.
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Repeated squaring.

Notice: 43=32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

3 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51) % (51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 % 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53+ 53 = 2809 = 37 (mod 77)

5132 = (5116) % (5116) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.51" = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.
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Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x4, ..., x2"*".
2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 =101011 in binary.
X433 32484241 _ 382 8 2 1

Modular Exponentiation: x¥ mod N.
All n-bit numbers.
Repeated Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.
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Recursive.

xY.

yiseven, y =2k, x¥ = x? = (x®)k. k=y/2
power (x,y) = power (x2,y/2).

yisodd, y =2k +1, x¥ = x?k = (x®)k. k = |y /2]
power (x,y) = x * power (x2,|y/2]).

Base case: x0 =1.
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RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m9 (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.
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E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (me)d =—m® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

— gklp=1) =1 (mod p) = akP-+1 = g (mod p)
versus  a® = g(P-1(@-)+1 — 3 (mod pq).

Similar, not same, but useful.
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Poll

Mark what is true.

(A)2" =1 mod7

(B)26=1 mod7

(C) 21,22,28 24 25 26 27 are distinct mod 7.
(D) 21,22 28 24 25 26 are distinct mod 7
(E)2'® =2 mod 7

(F)2' =1 mod 7

(
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Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a'=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = g (mod p)

Proof:

If a=0 (mod p), “trivially”.

Otherwise

g1+b(p-1) =
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Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Otherwise

a1—¢—b(p71) = a1 " (ap71)b
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Fermat’s Little Theorem: For prime p, and a0 (mod p),
@ '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'*ttP-1) = g (mod p)

Proof:

Ifa=0 (mod p), “trivially”.

Otherwise

a1+b(P*1) = 31 *(ap71)b = a*(1)b =a (mod p)
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Lemma 1: For any prime p and any a, b,
a'tt(P-1) = a (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(e=1(@-1) = x (mod pq)
Proof: True for x = 0.

Let a=x, b=k(p—1) and apply Lemma 1 with modulus q.
XHKE-1@ = x (mod q)
Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.
X1+k(p_1)(q_1) =X (mod p)
x+k@=1)pP-1) _ x is multiple of p and q
x1+k(@-1)P-1) _x =0 mod (PQ) = x1Hk(@=1)P-1) = x mod Pq.

Also from CRT:
y=x (mod p)and y = x (mod q) = y =x (mod pq).
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Recall

D(E(x)) = (x°) = x* (mod pg),
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RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pg),

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

%9 = yk(p—1)(q—1)+1
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RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1tk(p=1)(g-1) = y (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)° =x* =x (mod pa).

where ed=1 mod (p—1)(g—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@=+1= x  (mod pq).
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Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: =(N) number of primes less than
N.Forall N > 17

a(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
¢s170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.
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Security of RSA.

Security?
1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.
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Hmmm..

How do you get Amazon’s key?
Browser asks Amazon!
“Person in middle”, pretending to be Amazon?

Browser shipped with say just one key.
The “authority.”

When Amazon provides key, it provides signature from authority.
Signature can be verified by browser, since it has key.
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|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
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E(Su(C),Kv) = (Sv(0))° = (C7)° = C




Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C, ]

Checks E(y,Ky)=C?
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|Verisign: ky, KV|
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Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky, = (N, e) and ky =d (N =pq.)

Browser “knows” Verisign’s public key: Kj, .
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Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky, = (N, e) and ky =d (N =pq.)

Browser “knows” Verisign’s public key: Kj, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky)= C? mod N.
Browser receives: [C, ]

Checks E(y,Ky)=C?

E(S,(C),Ky)=(S,(C))¢=(CYe=C%=C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
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Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N=m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C
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Signature authority has public key (N.e).

(A) Given message/signature (x,y) : check y? = x (mod N)
(B) Given message/signature (x,y): check y® = x (mod N)
(C) Signature of message x is x¢ (mod N)
(D) Signature of message x is x4 (mod N)



Poll

Signature authority has public key (N.e).

) Given message/signature (x,y) : check y9 = x (mod N)
) Given message/signature (x,y): check y€ = x (mod N)
) Signature of message x is x¢ (mod N)

) Signature of message x is x? (mod N)

)

(A

(B
(C
(D
(B) and (D).
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If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...
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Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?
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Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x)=x® (mod N).
D(y) =y (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.



